Efficient networks for quantum factoring

被引:167
作者
Beckman, D
Chari, AN
Devabhaktuni, S
Preskill, J
机构
[1] California Institute of Technology, Pasadena, CA
来源
PHYSICAL REVIEW A | 1996年 / 54卷 / 02期
关键词
D O I
10.1103/PhysRevA.54.1034
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We consider how to optimize memory use and computation time in operating a quantum computer. In particular, we estimate the number of memory quantum bits (qubits) and the number of operations required to perform factorization, using the algorithm suggested by Shot [in Proceedings of the 35th Annual Symposium on Foundations of Computer Science, edited by S. Goldwasser (IEEE Computer Society, Los Alamitos, CA, 1994), p. 124]. A K-bit number can be factored in time of order K-3 using a machine capable of storing 5K+1 qubits. Evaluation of the modular exponential function (the bottleneck of Shor's algorithm) could be achieved with about 72K(3) elementary quantum gates; implementation using a linear ion trap would require about 396K(3) laser pulses. A proof-of-principle demonstration of quantum factoring (factorization of 15) could be performed with only 6 trapped ions and 38 laser pulses. Though the ion trap may never be a useful computer, it will be a powerful device for exploring experimentally the properties of entangled quantum states.
引用
收藏
页码:1034 / 1063
页数:30
相关论文
共 44 条
[1]  
AHJO AV, 1974, DESIGN ANAL COMPUTER, P270
[2]   CONDITIONAL QUANTUM DYNAMICS AND LOGIC GATES [J].
BARENCO, A ;
DEUTSCH, D ;
EKERT, A ;
JOZSA, R .
PHYSICAL REVIEW LETTERS, 1995, 74 (20) :4083-4086
[3]   ELEMENTARY GATES FOR QUANTUM COMPUTATION [J].
BARENCO, A ;
BENNETT, CH ;
CLEVE, R ;
DIVINCENZO, DP ;
MARGOLUS, N ;
SHOR, P ;
SLEATOR, T ;
SMOLIN, JA ;
WEINFURTER, H .
PHYSICAL REVIEW A, 1995, 52 (05) :3457-3467
[4]   TELEPORTING AN UNKNOWN QUANTUM STATE VIA DUAL CLASSICAL AND EINSTEIN-PODOLSKY-ROSEN CHANNELS [J].
BENNETT, CH ;
BRASSARD, G ;
CREPEAU, C ;
JOZSA, R ;
PERES, A ;
WOOTTERS, WK .
PHYSICAL REVIEW LETTERS, 1993, 70 (13) :1895-1899
[5]   TIME-SPACE TRADE-OFFS FOR REVERSIBLE COMPUTATION [J].
BENNETT, CH .
SIAM JOURNAL ON COMPUTING, 1989, 18 (04) :766-776
[6]   LOGICAL REVERSIBILITY OF COMPUTATION [J].
BENNETT, CH .
IBM JOURNAL OF RESEARCH AND DEVELOPMENT, 1973, 17 (06) :525-532
[7]   OBSERVATION OF QUANTUM JUMPS IN A SINGLE ATOM [J].
BERGQUIST, JC ;
HULET, RG ;
ITANO, WM ;
WINELAND, DJ .
PHYSICAL REVIEW LETTERS, 1986, 57 (14) :1699-1702
[8]  
BERNSTEIN E, 1993, 25TH P ANN ACM S THE, P11
[9]  
BERTHIAUME A, 1992, 7TH P ANN IEEE C STR, P132
[10]   Good quantum error-correcting codes exist [J].
Calderbank, AR ;
Shor, PW .
PHYSICAL REVIEW A, 1996, 54 (02) :1098-1105