Schmidt's subspace theorem with moving targets

被引:32
作者
Ru, M [1 ]
Vojta, P [1 ]
机构
[1] UNIV CALIF BERKELEY,DEPT MATH,BERKELEY,CA 94720
关键词
D O I
10.1007/s002220050114
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
[No abstract available]
引用
收藏
页码:51 / 65
页数:15
相关论文
共 22 条
[1]  
AHLFORS L, 1941, ACTA SOC SCI FENN A2, V4, P171
[2]  
Cartan H., 1933, Mathematica, V7, P5
[3]   DIOPHANTINE APPROXIMATION ON ABELIAN-VARIETIES [J].
FALTINGS, G .
ANNALS OF MATHEMATICS, 1991, 133 (03) :549-576
[4]  
NOCHKA EI, 1983, SOV MATH DOKL, V27
[5]  
NOCHKA EI, 1982, IZV AKAD NAUK FTMN, V1, P47
[6]   SOMETIMES EFFECTIVE "THUE-SIEGEL-ROTH-SCHMIDT-NEVANLINNA BOUNDS, OR BETTER [J].
OSGOOD, CF .
JOURNAL OF NUMBER THEORY, 1985, 21 (03) :347-389
[7]  
RU M, 1990, CR ACAD SCI I-MATH, V310, P45
[8]   INTEGRAL POINTS OF PN - (2N+1 HYPERPLANES IN GENERAL POSITION) [J].
RU, M ;
WONG, PM .
INVENTIONES MATHEMATICAE, 1991, 106 (01) :195-216
[9]  
RU M., 1991, Journal of Geom. Anal., V1, P99
[10]  
Schmidt W.M, 1980, LECT NOTES MATH, V785