Chromosome-wide Rad51 Spreading and SUMO-H2A.Z-Dependent Chromosome Fixation in Response to a Persistent DNA Double-Strand Break

被引:272
作者
Kalocsay, Marian [1 ]
Hiller, Natalie Jasmin [1 ]
Jentsch, Stefan [1 ]
机构
[1] Max Planck Inst Biochem, Dept Mol Cell Biol, D-82152 Martinsried, Germany
关键词
RECOMBINATIONAL REPAIR; YEAST GENES; DAMAGE; CHECKPOINT; PROTEINS; SGS1; RECRUITMENT; ADAPTATION; UBIQUITIN; RESECTION;
D O I
10.1016/j.molcel.2009.01.016
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
DNA double-strand breaks (DSBs) are acutely hazardous for cells, as they can cause genome instability. DSB repair involves the sequential recruitment of repair factors to the DSBs, followed by Rad51 mediated homology probing, DNA synthesis, and ligation. However, little is known about how cells react if no homology is found and DSBs persist. Here, by monitoring a single persistent DNA break, we show that, following DNA resection and RPA recruitment, Rad51 spreads chromosome-wide bidirectionally from the DSB but selectively only on the broken chromosome. Remarkably, the persistent DSB is later fixed to the nuclear periphery in a process that requires Rad51, the histone variant H2A.Z, its SUMO modification, and the DNA-damage checkpoint. Indeed, H2A.Z is deposited close to the break early but transiently and directs DNA resection, single DSB-induced checkpoint activation, and DSB anchoring. Thus, a persistent DSB induces a multifaceted response, which is linked to a specific chromatin mark.
引用
收藏
页码:335 / 343
页数:9
相关论文
共 37 条
[1]  
Aparicio Oscar, 2005, Curr Protoc Mol Biol, VChapter 21, DOI 10.1002/0471142727.mb2103s69
[2]   Finding a match: how do homologous sequences get together for recombination? [J].
Barzel, Adi ;
Kupiec, Martin .
NATURE REVIEWS GENETICS, 2008, 9 (01) :27-37
[3]   H2A.z-mediated localization of genes at the nuclear periphery confers epigenetic memory of previous transcriptional state [J].
Brickner, Donna Garvey ;
Cajigas, Ivelisse ;
Fondufe-Mittendorf, Yvonne ;
Ahmed, Sara ;
Lee, Pei-Chih ;
Widom, Jonathan ;
Brickner, Jason H. .
PLOS BIOLOGY, 2007, 5 (04) :704-716
[4]   Acetylated lysine 56 on histone H3 drives chromatin assembly after repair and signals for the completion of repair [J].
Chen, Chin-Chuan ;
Carson, Joshua J. ;
Feser, Jason ;
Tamburini, Beth ;
Zabaronick, Susan ;
Linger, Jeffrey ;
Tyler, Jessica K. .
CELL, 2008, 134 (02) :231-243
[5]   The Saccharomyces cerevisiae Sae2 protein promotes resection and bridging of double strand break ends [J].
Clerici, M ;
Mantiero, D ;
Lucchini, G ;
Longhese, MP .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2005, 280 (46) :38631-38638
[6]   Mechanism of eukaryotic homologous recombination [J].
Filippo, Joseph San ;
Sung, Patrick ;
Klein, Hannah .
ANNUAL REVIEW OF BIOCHEMISTRY, 2008, 77 :229-257
[7]   DNA helicases Sgs1 and BLM promote DNA double-strand break resection [J].
Gravel, Serge ;
Chapman, J. Ross ;
Magill, Christine ;
Jackson, Stephen P. .
GENES & DEVELOPMENT, 2008, 22 (20) :2767-2772
[8]   Surviving the breakup: The DNA damage checkpoint [J].
Harrison, Jacob C. ;
Haber, James E. .
ANNUAL REVIEW OF GENETICS, 2006, 40 :209-235
[9]   RAD6-dependent DNA repair is linked to modification of PCNA by ubiquitin and SUMO [J].
Hoege, C ;
Pfander, B ;
Moldovan, GL ;
Pyrowolakis, G ;
Jentsch, S .
NATURE, 2002, 419 (6903) :135-141
[10]   DNA end resection, homologous recombination and DNA damage checkpoint activation require CDK1 [J].
Ira, G ;
Pellicioli, A ;
Balijja, A ;
Wang, X ;
Fiorani, S ;
Carotenuto, W ;
Liberi, G ;
Bressan, D ;
Wan, LH ;
Hollingsworth, NM ;
Haber, JE ;
Foiani, M .
NATURE, 2004, 431 (7011) :1011-1017