Quantitative analysis of variations in depositional sequence thickness from submarine channel levees

被引:75
作者
Skene, KI
Piper, DJW
Hill, PS
机构
[1] Dalhousie Univ, Dept Oceanog, Halifax, NS B3H 4J1, Canada
[2] Geol Survey Canada Atlantic, Bedford Inst Oceanog, Dartmouth, NS B2Y 4A2, Canada
关键词
submarine channel levees; turbidity currents;
D O I
10.1046/j.1365-3091.2002.00506.x
中图分类号
P5 [地质学];
学科分类号
0709 ; 081803 ;
摘要
Thickness variations across-levee and downchannel in acoustically defined depositional sequences from six submarine channel-levee systems show consistent and quantifiable patterns. The thickness of depositional sequences perpendicular to the channel trend, i.e. across the levee, decreases exponentially, as characterized by a spatial decay constant, k. Similarly, the thickness of sediment at the levee crest decreases exponentially down the upper reaches of submarine channels and can be characterized by a second spatial decay constant, k. The inverse of these decay constants has units of length and defines depositional length scales such that k(-1) is a measure of levee width and k(-1) is a measure of levee length. Quantification of levee architecture in this way allowed investigation of relationships between levee architecture and channel dimensions. It was found that these measures of levee e-folding width and levee e-folding length are directly related to channel width and relief. The dimensions of channels and levees are thus intimately related, thereby limiting the range of potential channel-levee morphologies, regardless of allocyclic forcing. A simple sediment budget model relates the product of the levee e-folding width and e-folding length to through-channel volume discharge. A classification system based on the quantitative downchannel behaviour of levee architecture allows identification of a 'mid-channel' reach, where sediment is passively transferred from the through-channel flow to the levees as an overspilling flow. Downstream from this reach, the channel gradually looses its control on guiding turbidity currents, and the resulting flow can be considered as an unconfined or spreading flow.
引用
收藏
页码:1411 / 1430
页数:20
相关论文
共 54 条
[1]  
ALBERTSON ML, 1950, T AM SOC CIV ENG, V115, P639
[2]  
ALEXANDER J, 1994, J SEDIMENT RES A, V64, P899
[3]  
[Anonymous], 1986, SCIENCE
[4]   AUTO-SUSPENSION OF TRANSPORTED SEDIMENT - TURBIDITY CURRENTS [J].
BAGNOLD, RA .
PROCEEDINGS OF THE ROYAL SOCIETY OF LONDON SERIES A-MATHEMATICAL AND PHYSICAL SCIENCES, 1962, 265 (1322) :315-&
[5]   MODELING OF TURBIDITY CURRENTS ON NAVY SUBMARINE FAN, CALIFORNIA CONTINENTAL BORDERLAND [J].
BOWEN, AJ ;
NORMARK, WR ;
PIPER, DJW .
SEDIMENTOLOGY, 1984, 31 (02) :169-185
[6]  
Clark JD, 1996, AAPG BULL, V80, P194
[7]  
CLARK JD, 1992, GEOLOGY, V20, P633, DOI 10.1130/0091-7613(1992)020<0633:QAOTGO>2.3.CO
[8]  
2
[9]  
DAMUTH JE, 1988, AAPG BULL, V72, P885
[10]  
Davis J.C., 2015, Statistics and data analysis in Geology, V3rd