Constraints-based genome-scale metabolic simulation for systems metabolic engineering

被引:96
作者
Park, Jong Myoung [1 ,2 ,3 ,4 ,5 ]
Kim, Tae Yong [1 ,2 ,3 ,4 ,5 ]
Lee, Sang Yup [1 ,2 ,3 ,4 ,5 ,6 ,7 ]
机构
[1] Korea Adv Inst Sci & Technol, Dept Chem & Biomol Engn, Program BK21, Taejon 305701, South Korea
[2] Korea Adv Inst Sci & Technol, Metab & Biomol Engn Natl Res Lab, Taejon 305701, South Korea
[3] Korea Adv Inst Sci & Technol, BioProc Engn Res Ctr, Taejon 305701, South Korea
[4] Korea Adv Inst Sci & Technol, Bioinformat Res Ctr, Taejon 305701, South Korea
[5] Korea Adv Inst Sci & Technol, Ctr Syst & Synthet Biotechnol, Inst BioCentury, Taejon 305701, South Korea
[6] Korea Adv Inst Sci & Technol, Dept Bio & Brain Engn, Coll Life Sci & Bioengn, Taejon 305701, South Korea
[7] Korea Adv Inst Sci & Technol, Dept Biol Sci, Coll Life Sci & Bioengn, Taejon 305701, South Korea
关键词
Systems metabolic engineering; In silico genome-scale metabolic model; In silico algorithms; Objective function; Constraint; Flux solution space; Validation; FLUX-BALANCE ANALYSIS; IN-SILICO PREDICTIONS; ESCHERICHIA-COLI; SACCHAROMYCES-CEREVISIAE; OPTIMIZATION FRAMEWORK; ESSENTIAL GENES; HIGH-THROUGHPUT; SUCCINIC ACID; NETWORK; MODELS;
D O I
10.1016/j.biotechadv.2009.05.019
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Random mutagenesis and selection approaches used traditionally for the development of industrial strains have largely been complemented by metabolic engineering, which allows purposeful modification of metabolic and cellular characteristics by using recombinant DNA and other molecular biological techniques. As systems biology advances as a new paradigm of research thanks to the development of genome-scale computational tools and high-throughput experimental technologies including omics, systems metabolic engineering allowing modification of metabolic, regulatory and signaling networks of the cell at the systems-level is becoming possible in silico genome-scale metabolic model and its simulation play increasingly important role in providing systematic strategies for metabolic engineering. The in silico genome-scale metabolic model is developed using genomic annotation. metabolic reactions. literature information, and experimental data The advent of in silico genome-scale metabolic model brought about the development of various algorithms to simulate the metabolic status of the cell as a whole. In this paper. we review the algorithms developed for the system-wide simulation and perturbation Of Cellular metabolism. discuss the characteristics of these algorithms, and suggest future research direction. (C) 2009 Published by Elsevier Inc
引用
收藏
页码:979 / 988
页数:10
相关论文
共 74 条
[1]   Identifying gene targets for the metabolic engineering of lycopene biosynthesis in Escherichia coli [J].
Alper, H ;
Jin, YS ;
Moxley, JF ;
Stephanopoulos, G .
METABOLIC ENGINEERING, 2005, 7 (03) :155-164
[2]   Construction of Escherichia coli K-12 in-frame, single-gene knockout mutants:: the Keio collection [J].
Baba, Tomoya ;
Ara, Takeshi ;
Hasegawa, Miki ;
Takai, Yuki ;
Okumura, Yoshiko ;
Baba, Miki ;
Datsenko, Kirill A. ;
Tomita, Masaru ;
Wanner, Barry L. ;
Mori, Hirotada .
MOLECULAR SYSTEMS BIOLOGY, 2006, 2 (1) :2006.0008
[3]   The global transcriptional regulatory network for metabolism in Escherichia coli exhibits few dominant functional states [J].
Barrett, CL ;
Herring, CD ;
Reed, JL ;
Palsson, BO .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2005, 102 (52) :19103-19108
[4]   Three factors underlying incorrect in silico predictions of essential metabolic genes [J].
Becker, Scott A. ;
Palsson, Bernhard O. .
BMC SYSTEMS BIOLOGY, 2008, 2
[5]   Intracellular crowding defines the mode and sequence of substrate uptake by Escherichia coli and constrains its metabolic activity [J].
Beg, Q. K. ;
Vazquez, A. ;
Ernst, J. ;
de Menezes, M. A. ;
Bar-Joseph, Z. ;
Barabasi, A.-L. ;
Oltvai, Z. N. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2007, 104 (31) :12663-12668
[6]   Large-scale 13C-flux analysis reveals mechanistic principles of metabolic network robustness to null mutations in yeast -: art. no. R49 [J].
Blank, LM ;
Kuepfer, L ;
Sauer, U .
GENOME BIOLOGY, 2005, 6 (06)
[7]   In silico aided metabolic engineering of Saccharomyces cerevisiae for improved bioethanol production [J].
Bro, C ;
Regenberg, B ;
Förster, J ;
Nielsen, J .
METABOLIC ENGINEERING, 2006, 8 (02) :102-111
[8]   Evaluation of predicted network modules in yeast metabolism using NMR-based metabolite profiling [J].
Bundy, Jacob G. ;
Papp, Balazs ;
Harmston, Rebecca ;
Browne, Roy A. ;
Clayson, Edward M. ;
Burton, Nicola ;
Reece, Richard J. ;
Oliver, Stephen G. ;
Brindle, Kevin M. .
GENOME RESEARCH, 2007, 17 (04) :510-519
[9]   OptKnock: A bilevel programming framework for identifying gene knockout strategies for microbial strain optimization [J].
Burgard, AP ;
Pharkya, P ;
Maranas, CD .
BIOTECHNOLOGY AND BIOENGINEERING, 2003, 84 (06) :647-657
[10]   Flux coupling analysis of genome-scale metabolic network reconstructions [J].
Burgard, AP ;
Nikolaev, EV ;
Schilling, CH ;
Maranas, CD .
GENOME RESEARCH, 2004, 14 (02) :301-312