The spherical X-ray transform

被引:7
作者
Cerejeiras, P [1 ]
Schaeben, H
Sommen, F
机构
[1] Univ Aveiro, Dept Matemat, P-3810 Aveiro, Portugal
[2] Freiberg Univ Min & Technol, D-09596 Freiberg, SA, Germany
[3] Univ Ghent, Dept Math Anal, B-9000 Ghent, Belgium
关键词
D O I
10.1002/mma.384
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The general objective of this communication is to present the basics of mathematical texture analysis as part of integral geometry involving spherical analogues of the X-ray and Radon transform, and in particular to clarify its relationship with mathematical tomography. Copyright (C) 2002 John Wiley Sons, Ltd.
引用
收藏
页码:1493 / 1507
页数:15
相关论文
共 18 条
[1]  
Altmann S.A., 1986, Rotations, Quaternions and Double Groups
[2]  
[Anonymous], 1998, APPL MATH SCI
[3]  
BERENSTEIN CA, 1996, LECT NOTES MATH, V1684
[4]  
Bunge H. J., 1982, Texture analysis in materials science: mathematical methods
[5]  
Gel'fand I M., 1982, J SOVIET MATH, V18, P39, DOI 10.1007/BF01098201
[6]   UBER DIE IDEALEN ORIENTIERUNGEN EINER WALZTEXTUR [J].
GREWEN, J ;
WASSERMANN, G .
ACTA METALLURGICA, 1955, 3 (04) :354-360
[7]  
Gurlebeck K., 1997, Quaternionic Calculus for Engineers and Physicists
[8]  
Helgason S., 1984, GROUPS GEOMETRIC ANA
[9]  
Kocks U. F., 1998, Texture and Anisotropy: Preferred Orientations in Polycrystals and Their Effecton Materials Properties
[10]  
KUIPERS JB, QUATERNIONS ROTATION