WNK1, a novel mammalian serine/threonine protein kinase lacking the catalytic lysine in subdomain II

被引:429
作者
Xu, BE
English, JM
Wilsbacher, JL
Stippec, S
Goldsmith, EJ
Cobb, MH
机构
[1] Univ Texas, SW Med Ctr, Dept Pharmacol, Dallas, TX 75390 USA
[2] Univ Texas, SW Med Ctr, Dept Biochem, Dallas, TX 75390 USA
关键词
D O I
10.1074/jbc.275.22.16795
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
We have cloned and characterized a novel mammalian serine/threonine protein kinase WNK1 ((w) under bar ith (n) under bar o lysine (K) under bar)) from a rat brain cDNA library. WNK1 has 2126 amino acids and can be detected as a protein of similar to 230 kDa in various cell lines and rat tissues. WNK1 contains a small N-terminal domain followed by the kinase domain and a long C-terminal tail. The WNK1 kinase domain has the greatest similarity to the MEKK protein kinase family. However, overexpression of WNK1 in HEK293 cells exerts no detectable effect on the activity of known, co transfected mitogen-activated protein kinases, suggesting that it belongs to a distinct pathway. WNK1 phosphorylates the exogenous substrate myelin basic protein as well as itself mostly on serine residues, confirming that it is a serine/threonine protein kinase. The demonstration of activity was striking because WNK1, and its homologs in other organisms lack the invariant catalytic lysine in subdomain II of protein kinases that is crucial for binding to ATP. A model of WNK1 using the structure of cAMP-dependent protein kinase suggests that lysine 233 in kinase subdomain I may provide this function. Mutation of this lysine residue to methionine eliminates WNK1 activity, consistent with the conclusion that it is required for catalysis. This distinct organization of catalytic residues indicates that WNK1 belongs to a novel family of serine/threonine protein kinases.
引用
收藏
页码:16795 / 16801
页数:7
相关论文
共 32 条
[1]   VIRAL SRC GENE-PRODUCTS ARE RELATED TO THE CATALYTIC CHAIN OF MAMMALIAN CAMP-DEPENDENT PROTEIN-KINASE [J].
BARKER, WC ;
DAYHOFF, MO .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA-BIOLOGICAL SCIENCES, 1982, 79 (09) :2836-2839
[2]   IDENTIFICATION OF MULTIPLE EXTRACELLULAR SIGNAL-REGULATED KINASES (ERKS) WITH ANTIPEPTIDE ANTIBODIES [J].
BOULTON, TG ;
COBB, MH .
CELL REGULATION, 1991, 2 (05) :357-371
[3]  
Christerson LB, 1999, CELL MOTIL CYTOSKEL, V43, P186, DOI 10.1002/(SICI)1097-0169(1999)43:3<186::AID-CM2>3.0.CO
[4]  
2-1
[5]   PURIFICATION OF A MURINE PROTEIN-TYROSINE THREONINE KINASE THAT PHOSPHORYLATES AND ACTIVATES THE ERK-1 GENE-PRODUCT - RELATIONSHIP TO THE FISSION YEAST BYR1 GENE-PRODUCT [J].
CREWS, CM ;
ERIKSON, RL .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1992, 89 (17) :8205-8209
[6]   A cytokine-responsive I kappa B kinase that activates the transcription factor NF-kappa B [J].
DiDonato, JA ;
Hayakawa, M ;
Rothwarf, DM ;
Zandi, E ;
Karin, M .
NATURE, 1997, 388 (6642) :548-554
[7]   New insights into the control of MAP kinase pathways [J].
English, J ;
Pearson, G ;
Wilsbacher, J ;
Swantek, J ;
Karandikar, M ;
Xu, SC ;
Cobb, MH .
EXPERIMENTAL CELL RESEARCH, 1999, 253 (01) :255-270
[8]   Identification of substrates and regulators of mitogen-activated protein kinase ERK5 using chimeric protein kinases [J].
English, JM ;
Pearson, G ;
Baer, R ;
Cobb, MH .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1998, 273 (07) :3854-3860
[9]   ISOLATION OF MEK5 AND DIFFERENTIAL EXPRESSION OF ALTERNATIVELY SPLICED FORMS [J].
ENGLISH, JM ;
VANDERBILT, CA ;
XU, SC ;
MARCUS, S ;
COBB, MH .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1995, 270 (48) :28897-28902
[10]  
GIBBS CS, 1991, J BIOL CHEM, V266, P8923