Functional bioinformatics of microarray data: From expression to regulation

被引:27
作者
Moreau, Y [1 ]
De Smet, F [1 ]
Thijs, G [1 ]
Marchal, K [1 ]
De Moor, B [1 ]
机构
[1] Katholieke Univ Leuven, Dept Elect Engn, Louvain, Belgium
关键词
adaptive quality-based clustering; clustering; Gibbs sampling; microarray; motif finding; regulation;
D O I
10.1109/JPROC.2002.804681
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Using microarrays is a powerful technique to monitor the expression of thousands of genes in a single experiment. From series of such experiments, it is possible to identify the mechanisms that govern the activation of genes in an organism. Short deoxyribonucleic acid patterns (called binding sites) near the genes serve as switches that control gene expression. As a result similar patterns of expression can correspond to similar binding site patterns. Here we integrate clustering of coexpressed genes with the discovery of binding motifs. We overview several important clustering techniques and present a clustering algorithm (called adaptive quality-based clustering), which we have developed to address several shortcomings of existing methods. We overview the different techniques for motif finding, in particular the technique of Gibbs sampling, and we present several extensions of this technique in our Motif Sampler Finally, we present an integrated web tool called INCLUSive (available online at http://www.esat.kuleuven.ac.belsimilar todna/BioI/Software.html) that allows the easy analysis of microarray data for motif finding.
引用
收藏
页码:1722 / 1743
页数:22
相关论文
共 61 条
[1]   Broad patterns of gene expression revealed by clustering analysis of tumor and normal colon tissues probed by oligonucleotide arrays [J].
Alon, U ;
Barkai, N ;
Notterman, DA ;
Gish, K ;
Ybarra, S ;
Mack, D ;
Levine, AJ .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1999, 96 (12) :6745-6750
[2]   A cluster validity framework for genome expression data [J].
Azuaje, F .
BIOINFORMATICS, 2002, 18 (02) :319-320
[3]  
BAILEY TL, 1995, MACH LEARN, V21, P51, DOI 10.1007/BF00993379
[4]   Clustering gene expression patterns [J].
Ben-Dor, A ;
Shamir, R ;
Yakhini, Z .
JOURNAL OF COMPUTATIONAL BIOLOGY, 1999, 6 (3-4) :281-297
[5]  
Ben-Dor A, 2001, P 5 ANN INT C COMP M, P31, DOI DOI 10.1145/369133.369167
[6]   Molecular classification of cutaneous malignant melanoma by gene expression profiling [J].
Bittner, M ;
Meitzer, P ;
Chen, Y ;
Jiang, Y ;
Seftor, E ;
Hendrix, M ;
Radmacher, M ;
Simon, R ;
Yakhini, Z ;
Ben-Dor, A ;
Sampas, N ;
Dougherty, E ;
Wang, E ;
Marincola, F ;
Gooden, C ;
Lueders, J ;
Glatfelter, A ;
Pollock, P ;
Carpten, J ;
Gillanders, E ;
Leja, D ;
Dietrich, K ;
Beaudry, C ;
Berens, M ;
Alberts, D ;
Sondak, V ;
Hayward, N ;
Trent, J .
NATURE, 2000, 406 (6795) :536-540
[7]   Regulatory elements and expression profiles [J].
Bucher, P .
CURRENT OPINION IN STRUCTURAL BIOLOGY, 1999, 9 (03) :400-407
[8]   EXPECTATION MAXIMIZATION ALGORITHM FOR IDENTIFYING PROTEIN-BINDING SITES WITH VARIABLE LENGTHS FROM UNALIGNED DNA FRAGMENTS [J].
CARDON, LR ;
STORMO, GD .
JOURNAL OF MOLECULAR BIOLOGY, 1992, 223 (01) :159-170
[9]   A genome-wide transcriptional analysis of the mitotic cell cycle [J].
Cho, RJ ;
Campbell, MJ ;
Winzeler, EA ;
Steinmetz, L ;
Conway, A ;
Wodicka, L ;
Wolfsberg, TG ;
Gabrielian, AE ;
Landsman, D ;
Lockhart, DJ ;
Davis, RW .
MOLECULAR CELL, 1998, 2 (01) :65-73
[10]   Adaptive quality-based clustering of gene expression profiles [J].
De Smet, F ;
Mathys, J ;
Marchal, K ;
Thijs, G ;
De Moor, B ;
Moreau, Y .
BIOINFORMATICS, 2002, 18 (05) :735-746