Inclusion grade and fuzzy implication operators

被引:46
作者
Burillo, P [1 ]
Frago, N [1 ]
Fuentes, R [1 ]
机构
[1] Univ Publ Navarra, Dept Automat & Computac, Navarra 31066, Spain
关键词
fuzzy relations; implication operators; inclusion grades;
D O I
10.1016/S0165-0114(98)00128-6
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
In this paper we propose a family of fuzzy implication operators, which generalises the Luckasiewicz's one, and to analyse the impacts of Smets and Magrez properties on these operators. The result of this approach will be a characterisation of a proposed family of inclusion grade operators that satisfies the axioms of Divyendu and Dogherty. (C) 2000 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:417 / 429
页数:13
相关论文
共 19 条
[1]   ON ALMOST DISTRIBUTIVE LUKASIEWICZ TRIPLETS [J].
ALSINA, C ;
TRILLAS, E .
FUZZY SETS AND SYSTEMS, 1992, 50 (02) :175-178
[2]  
[Anonymous], 1992, NEURAL NETWORKS FUZZ
[3]   FUZZY POWER SETS AND FUZZY IMPLICATION OPERATORS [J].
BANDLER, W ;
KOHOUT, L .
FUZZY SETS AND SYSTEMS, 1980, 4 (01) :13-30
[4]  
DIVYENDU S, 1993, FUZZY SETS SYSTEMS, V55, P15
[5]  
DIVYENDU S, 1992, SPIE, V1708, P440
[6]   FUZZY LOGICS AND THE GENERALIZED MODUS PONENS REVISITED [J].
DUBOIS, D ;
PRADE, H .
CYBERNETICS AND SYSTEMS, 1984, 15 (3-4) :293-331
[7]   FUZZY-SETS IN APPROXIMATE REASONING .1. INFERENCE WITH POSSIBILITY DISTRIBUTIONS [J].
DUBOIS, D ;
PRADE, H .
FUZZY SETS AND SYSTEMS, 1991, 40 (01) :143-202
[8]   FUZZY-SETS IN APPROXIMATE REASONING .2. LOGICAL APPROACHES [J].
DUBOIS, D ;
LANG, J ;
PRADE, H .
FUZZY SETS AND SYSTEMS, 1991, 40 (01) :203-244
[9]  
Dubois D.J., 1980, FUZZY SETS SYSTEMS T
[10]  
FRAGO N, 1996, THESIS U PUBLICA NAV