Geodynamic evolution of the lithosphere and upper mantle beneath the Alboran region of the western Mediterranean: Constraints from travel time tomography

被引:243
作者
Calvert, A
Sandvol, E
Seber, D
Barazangi, M
Roecker, S
Mourabit, T
Vidal, F
Alguacil, G
Jabour, N
机构
[1] Cornell Univ, Inst Study Continents, Ithaca, NY 14853 USA
[2] Univ Granada, Inst Andaluz Geofis, E-18071 Granada, Spain
[3] CNCPRST, Rabat, Morocco
[4] Abdelmalek Essaadi Univ, Dept Geol, Tetouan, Morocco
[5] Rensselaer Polytech Inst, Dept Earth & Environm Sci, Troy, NY 12180 USA
[6] Gen Ibanez Ibero, Inst Geog Nacl, Madrid, Spain
关键词
D O I
10.1029/2000JB900024
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
A number of different geodynamic models have been proposed to explain the extension that occurred during the Miocene in the Alboran Sea region of the western Mediterranean despite the continued convergence and shortening of northern Africa and southern Iberia. In an effort to provide additional geophysical constraints on these models, we performed a local, regional, and teleseismic tomographic travel time inversion for the lithospheric and upper mantle velocity structure and earthquake locations beneath the Alboran region in an area of 800 x 800 km(2). We picked P and S arrival times from digital and analog seismograms recorded by 96 seismic stations in Morocco and Spain between 1989 and 1996 and combined them with arrivals carefully selected from local and global catalogs (1964-1998) to generate a starting data set containing over 100,000 arrival times. Our results indicate that a N-S line of intermediate-depth earthquakes extending from crustal depths significantly inland from the southern Iberian coast to depths of over 100 km beneath the center of the Alboran Sea coincides with a W to E transition from high to low velocities imaged in the uppermost mantle. A high-velocity body, striking approximately NE-SW, is imaged to dip southeastwards from lithospheric depths beneath the low-velocity region to depths of similar to 350 km. Between 350 and 500 km the imaged velocity anomalies become more diffuse. However, pronounced high-velocity anomalies are again imaged at 600 km near an isolated cluster of deep earthquakes. In addition to standard tomographic methods of error assessment, the effects of systematic and random errors were assessed using block shifting and bootstrap resampling techniques, respectively. We interpret the upper mantle high-velocity anomalies as regions of colder mantle that originate from lithospheric depths. These observations, when combined with results from other studies, suggest that delamination of a continental lithosphere played an important role in the Neogene and Quaternary evolution of the region.
引用
收藏
页码:10871 / 10898
页数:28
相关论文
共 83 条
[2]   DEEP-STRUCTURE OF AN ARC-CONTINENT COLLISION - EARTHQUAKE RELOCATION AND INVERSION FOR UPPER MANTLE P AND S-WAVE VELOCITIES BENEATH PAPUA-NEW-GUINEA [J].
ABERS, GA ;
ROECKER, SW .
JOURNAL OF GEOPHYSICAL RESEARCH-SOLID EARTH AND PLANETS, 1991, 96 (B4) :6379-6401
[3]  
AKI K, 1976, B SEISMOL SOC AM, V66, P501
[4]   FRAGMENTATION OF ALPINE OROGENIC BELT BY MICROPLATE DISPERSAL [J].
ALVAREZ, W ;
COCOZZA, T ;
WEZEL, FC .
NATURE, 1974, 248 (5446) :309-314
[5]   Fission-track constraints on timing of Alpine nappe emplacement and rates of cooling and exhumation, Torrox area, Betic Cordilleras, S Spain [J].
Andriessen, PAM ;
Zeck, HP .
CHEMICAL GEOLOGY, 1996, 131 (1-4) :199-206
[6]   EXPLANATORY MODEL FOR GIBRALTAR ARC [J].
ANDRIEUX, J ;
FONTBOTE, JM ;
MATTAUER, M .
EARTH AND PLANETARY SCIENCE LETTERS, 1971, 12 (02) :191-&
[7]  
[Anonymous], 1989, ALPINE TECTONICS
[8]  
[Anonymous], ORIGIN ARCS
[9]   Alternating contractional and extensional events in the Alpujarride Nappes of the Alboran domain (Betics, Gibraltar arc) [J].
Balanya, JC ;
GarciaDuenas, V ;
Azanon, JM ;
SanchezGomez, M .
TECTONICS, 1997, 16 (02) :226-238
[10]   LATERAL VARIATION OF THE CRUST IN THE IBERIAN PENINSULA - NEW EVIDENCE FROM THE BETIC CORDILLERA [J].
BANDA, E ;
GALLART, J ;
GARCIADUENAS, V ;
DANOBEITIA, JJ ;
MAKRIS, J .
TECTONOPHYSICS, 1993, 221 (01) :53-66