Post-optimal procedures for structural optimization

被引:5
作者
Hernández, S [1 ]
机构
[1] Univ A Coruna, ETS Ingn Caminos Canales & Puertos, La Coruna 15071, Spain
关键词
structural optimization; global optimization; multiobjective optimization;
D O I
10.1016/S0965-9978(00)00008-9
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Structural optimization is a very well established design tool in several engineering fields when the problem is formulated with a single objective function and the feasible design region turns out to be convex. Nevertheless, many real problems lead to more complex formulations, sometimes because more than one local minima exist, or because more than one objective function must be included in the formulation. For such cases two procedures intended to enhance the capabilities of design optimization, namely, one approach to global optimization and a recent procedure to obtain sensitivity analysis in multiobjective optimization, are presented in the paper. (C) 2000 Elsevier Science Ltd. All rights reserved.
引用
收藏
页码:401 / 409
页数:9
相关论文
共 32 条
[1]  
Arora J., 2004, Introduction to Optimum Design
[2]   GLOBAL OPTIMIZATION METHODS FOR ENGINEERING APPLICATIONS - A REVIEW [J].
ARORA, JS ;
ELWAKEIL, OA ;
CHAHANDE, AI ;
HSIEH, CC .
STRUCTURAL OPTIMIZATION, 1995, 9 (3-4) :137-159
[3]  
BARTHELEMY JF, 1983, AIAA J, V21, P707
[4]   OPTIMUM SENSITIVITY DERIVATIVES OF OBJECTIVE FUNCTIONS IN NON-LINEAR PROGRAMMING [J].
BARTHELEMY, JFM ;
SOBIESZCZANSKISOBIESKI, J .
AIAA JOURNAL, 1983, 21 (06) :913-915
[5]  
Bendsoe MP., 1995, OPTIMIZATION STRUCTU, DOI DOI 10.1007/978-3-662-03115-5
[6]  
BENNET JA, 1986, OPTIMUM SHAPE
[7]  
DUCKSTEIN L, 1984, NEW DIRECTIONS OPTIM
[8]  
Eschenauer H., 1990, MULTICRITERIA DESIGN
[9]  
FLOUDAS A, 1992, RECENT ADV GLOBAL OP
[10]  
Frangopol D., 1996, Advances in Structural Optimization