Neuromorphic silicon neuron circuits

被引:946
作者
Indiveri, Giacomo [1 ,2 ]
Linares-Barranco, Bernabe [3 ]
Hamilton, Tara Julia [4 ]
van Schaik, Andre [5 ]
Etienne-Cummings, Ralph [6 ]
Delbruck, Tobi [1 ,2 ]
Liu, Shih-Chii [1 ,2 ]
Dudek, Piotr [7 ]
Hafliger, Philipp [8 ]
Renaud, Sylvie [9 ,10 ]
Schemmel, Johannes [11 ]
Cauwenberghs, Gert [12 ,13 ]
Arthur, John [14 ]
Hynna, Kai [14 ]
Folowosele, Fopefolu [6 ]
Saighi, Sylvain [9 ,10 ]
Serrano-Gotarredona, Teresa [3 ]
Wijekoon, Jayawan [7 ]
Wang, Yingxue [15 ]
Boahen, Kwabena [14 ]
机构
[1] Univ Zurich, Inst Neuroinformat, CH-8057 Zurich, Switzerland
[2] ETH, Zurich, Switzerland
[3] Natl Microelect Ctr, Inst Microelect Sevilla, Seville, Spain
[4] Univ New S Wales, Sch Elect Engn & Telecommun, Sydney, NSW 2052, Australia
[5] Univ Sydney, Sch Elect & Informat Engn, Sydney, NSW 2006, Australia
[6] Johns Hopkins Univ, Whiting Sch Engn, Baltimore, MD USA
[7] Univ Manchester, Sch Elect & Elect Engn, Manchester, Lancs, England
[8] Univ Oslo, Dept Informat, N-0316 Oslo, Norway
[9] Bordeaux Univ, Lab Integrat Mat Syst, Bordeaux, France
[10] IMS CNRS Lab, Bordeaux, France
[11] Heidelberg Univ, Kirchhoff Inst Phys, Heidelberg, Germany
[12] Univ Calif San Diego, Dept Bioengn, La Jolla, CA 92093 USA
[13] Univ Calif San Diego, Inst Neural Computat, La Jolla, CA 92093 USA
[14] Stanford Univ, Stanford Bioengn, Stanford, CA 94305 USA
[15] Howard Hughes Med Inst, Ashburn, VA USA
基金
欧洲研究理事会; 英国工程与自然科学研究理事会; 澳大利亚研究理事会; 瑞士国家科学基金会;
关键词
analog VLSI; subthreshold; spiking; integrate and fire; conductance based; adaptive exponential; log-domain; circuit; SPIKING NEURONS; SYNAPTIC PLASTICITY; ANALOG; MODEL; NETWORKS; DYNAMICS; CALIBRATION; SIMULATION; DENDRITES; SYNAPSES;
D O I
10.3389/fnins.2011.00073
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
Hardware implementations of spiking neurons can be extremely useful for a large variety of applications, ranging from high-speed modeling of large-scale neural systems to real-time behaving systems, to bidirectional brain-machine interfaces. The specific circuit solutions used to implement silicon neurons depend on the application requirements. In this paper we describe the most common building blocks and techniques used to implement these circuits, and present an overview of a wide range of neuromorphic silicon neurons, which implement different computational models, ranging from biophysically realistic and conductance-based Hodgkin-Huxley models to bi-dimensional generalized adaptive integrate and fire models. We compare the different design methodologies used for each silicon neuron design described, and demonstrate their features with experimental results, measured from a wide range of fabricated VLSI chips.
引用
收藏
页数:23
相关论文
共 103 条
[41]   Thermodynamically equivalent silicon models of voltage-dependent ion channels [J].
Hynna, Kai M. ;
Boahen, Kwabena .
NEURAL COMPUTATION, 2007, 19 (02) :327-350
[42]   Nonlinear Influence of T-Channels in an in silico Relay Neuron [J].
Hynna, Kai M. ;
Boahen, Kwabena A. .
IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, 2009, 56 (06) :1734-1743
[43]   Modeling selective attention using a neuromorphic analog VLSI device [J].
Indiveri, G .
NEURAL COMPUTATION, 2000, 12 (12) :2857-2880
[44]  
Indiveri G., 2007, Neural Inf. Process. Lett. Rev, V11, P135
[45]  
Indiveri G., 2001, WORLD C NEUROINFORMA, P443
[46]   Artificial Cognitive Systems: From VLSI Networks of Spiking Neurons to Neuromorphic Cognition [J].
Indiveri, Giacomo ;
Chicca, Elisabetta ;
Douglas, Rodney J. .
COGNITIVE COMPUTATION, 2009, 1 (02) :119-127
[47]  
Indiveri G, 2010, IEEE INT SYMP CIRC S, P1951, DOI 10.1109/ISCAS.2010.5536980
[48]   Simple model of spiking neurons [J].
Izhikevich, EM .
IEEE TRANSACTIONS ON NEURAL NETWORKS, 2003, 14 (06) :1569-1572
[49]   MODELING SPIKING NEURAL NETWORKS ON SPINNAKER [J].
Jin, Xin ;
Lujan, Mikel ;
Plana, Luis A. ;
Davies, Sergio ;
Temple, Steve ;
Furber, Steve B. .
COMPUTING IN SCIENCE & ENGINEERING, 2010, 12 (05) :91-97
[50]   Generalized integrate-and-fire models of neuronal activity approximate spike trains of a detailed model to a high degree of accuracy [J].
Jolivet, R ;
Lewis, TJ ;
Gerstner, W .
JOURNAL OF NEUROPHYSIOLOGY, 2004, 92 (02) :959-976