Although ovarian cancer is the most common gynecological malignancy with a relatively poor 5-yr survival record, the mechanism(s) by which these tumors arise is not well understood. A role for inhibins and activins in regulating this transformation is suggested by the detection of circulating alpha or dimeric inhibin in some patients with ovarian cancer and by the alpha inhibin knockout mouse, in which development of gonadal tumors in 100% of hornozygotes is associated with greatly elevated activin levels. To develop diagnostic tools with greater specificity for ovarian cancers, the present study was targeted at characterizing the biosynthetic capacity of the epithelial ovarian cancer cell lines from the American Type Culture Collection with respect to inhibin, activin, the related activin-binding protein follistatin (FS), and activin receptor type II. In addition, the functional capacity of this system was investigated by examining the ability of activin and FS to modulate cellular proliferation. All six cell lines contained abundant messenger RNA (mRNA) for activin receptor type II, but no inhibin alpha-subunit mRNA was detected in any cell line. Two cell lines contained mRNA for activin beta B-subunit (CaOV4 and SKOV3), one cell Line contained beta A-subunit mRNA (SW626), and one cell line contained both (ES2); the latter also contained FS mRNA. FS mRNA was detected in another cell line (PA-1) that contained no detectable activin beta-subunit mRNA. Finally, one cell line (CaOV3) contained neither beta-subunit nor FS mRNA.