Theory of circle maps and the problem of one-dimensional optical resonator with a periodically moving wall

被引:23
作者
de la Llave, R [1 ]
Petrov, NP
机构
[1] Univ Texas, Dept Math, Austin, TX 78712 USA
[2] Univ Texas, Dept Phys, Austin, TX 78712 USA
来源
PHYSICAL REVIEW E | 1999年 / 59卷 / 06期
关键词
D O I
10.1103/PhysRevE.59.6637
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We consider the electromagnetic held in a cavity with a periodically oscillating perfectly reflecting boundary and show that the mathematical theory of circle maps leads to several physical predictions. Notably, well-known results in the theory of circle maps (which we review briefly) imply that there are intervals of parameters where the waves in the cavity get concentrated in wave packets whose energy grows exponentially. Even if these intervals are dense for typical motions of the reflecting boundary, in the complement there is a positive measure set of parameters where the energy remains bounded.
引用
收藏
页码:6637 / 6651
页数:15
相关论文
共 53 条
[1]  
[Anonymous], 1966, ANN SCUOLA NORM-SCI
[2]  
[Anonymous], 1996, DYNAMICAL SYSTEMS PR
[3]  
[Anonymous], 1985, BOL SOC BRAS MAT
[4]  
Arnold VI., 1965, Trans. Am. Math. Soc. 2nd Ser, V46, P213, DOI [10.1007/BF00275153, 10.1090/trans2/046/11]
[5]  
Balazs N., 1961, J. Math. Anal. Appl., V3, P472, DOI [/10.1016/0022-247X(61)90071-3, DOI 10.1016/0022-247X(61)90071-3]
[6]  
BRACK M, 1997, SEMICLASSICAL PHYSIC, pCH5
[7]   RADIATION MODES OF A CAVITY WITH A MOVING BOUNDARY [J].
COLE, CK ;
SCHIEVE, WC .
PHYSICAL REVIEW A, 1995, 52 (06) :4405-4415
[8]  
COLE CK, 1996, THESIS U TEXAS AUSTI
[9]   LONG-TIME BEHAVIOR AND ENERGY GROWTH FOR ELECTROMAGNETIC-WAVES REFLECTED BY A MOVING BOUNDARY [J].
COOPER, J .
IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, 1993, 41 (10) :1365-1370
[10]   ENERGY BOUNDEDNESS AND DECAY OF WAVES REFLECTING OFF A MOVING OBSTACLE [J].
COOPER, J ;
STRAUSS, WA .
INDIANA UNIVERSITY MATHEMATICS JOURNAL, 1976, 25 (07) :671-690