Explicit single step methods with optimal order of convergence for partial differential equations

被引:8
作者
Alonso-Mallo, I [1 ]
机构
[1] Univ Valladolid, Fac Ciencias, Dept Matemat Aplicada & Computac, Valladolid, Spain
关键词
method of lines; order reduction;
D O I
10.1016/S0168-9274(98)00132-9
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We construct explicit single step discretizations of linear, non-homogeneous initial boundary value problems. These methods use polynomial approximations for the time discretization. The order reduction phenomenon, present when a fully discrete Runge-Kutta is used, is avoided and the maximum expected order of convergence is achieved. The results are illustrated numerically, (C) 1999 Elsevier Science B.V. and IMACS. All rights reserved.
引用
收藏
页码:117 / 131
页数:15
相关论文
共 19 条
[1]   On the convolution operators arising in the study of abstract initial boundary value problems [J].
Alonso-Mallo, I ;
Palencia, C .
PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 1996, 126 :515-539
[2]  
ALONSOMALLO I, UNPUB RATIONAL METHO
[3]  
[Anonymous], NUMER MATH
[4]  
BRENNER P, 1982, RAIRO-ANAL NUMER-NUM, V16, P5
[5]   RATIONAL APPROXIMATIONS OF SEMIGROUPS [J].
BRENNER, P ;
THOMEE, V .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1979, 16 (04) :683-694
[6]   THE THEORETICAL ACCURACY OF RUNGE-KUTTA TIME DISCRETIZATIONS FOR THE INITIAL-BOUNDARY VALUE-PROBLEM - STUDY OF THE BOUNDARY ERROR [J].
CARPENTER, MH ;
GOTTLIEB, D ;
ABARBANEL, S ;
DON, WS .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 1995, 16 (06) :1241-1252
[7]  
HIRER E, 1991, SOLVING ORDINARY DIF, V2
[8]  
KOTO T, 1994, ANN NUMER MATH, V1, P335
[9]   RUNGE-KUTTA METHODS FOR PARTIAL-DIFFERENTIAL EQUATIONS AND FRACTIONAL ORDERS OF CONVERGENCE [J].
OSTERMANN, A ;
ROCHE, M .
MATHEMATICS OF COMPUTATION, 1992, 59 (200) :403-420
[10]   ROSENBROCK METHODS FOR PARTIAL-DIFFERENTIAL EQUATIONS AND FRACTIONAL ORDERS OF CONVERGENCE [J].
OSTERMANN, A ;
ROCHE, M .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1993, 30 (04) :1084-1098