Differential methylation status of imprinted genes in nuclear transfer derived ES (NT-ES) cells
被引:23
作者:
Chang, Gang
论文数: 0引用数: 0
h-index: 0
机构:
Natl Inst Biol Sci, Beijing 102206, Peoples R China
Chinese Acad Sci, State Key Lab Reprod Biol, Beijing 100101, Peoples R China
Chinese Acad Sci, Grad Sch, Beijing 100049, Peoples R ChinaNatl Inst Biol Sci, Beijing 102206, Peoples R China
Chang, Gang
[1
,2
,3
]
Liu, Sheng
论文数: 0引用数: 0
h-index: 0
机构:
Natl Inst Biol Sci, Beijing 102206, Peoples R ChinaNatl Inst Biol Sci, Beijing 102206, Peoples R China
Liu, Sheng
[1
]
Wang, Fengchao
论文数: 0引用数: 0
h-index: 0
机构:
Natl Inst Biol Sci, Beijing 102206, Peoples R ChinaNatl Inst Biol Sci, Beijing 102206, Peoples R China
Wang, Fengchao
[1
]
Zhang, Yu
论文数: 0引用数: 0
h-index: 0
机构:
Natl Inst Biol Sci, Beijing 102206, Peoples R ChinaNatl Inst Biol Sci, Beijing 102206, Peoples R China
Zhang, Yu
[1
]
Kou, Zhaohui
论文数: 0引用数: 0
h-index: 0
机构:
Natl Inst Biol Sci, Beijing 102206, Peoples R ChinaNatl Inst Biol Sci, Beijing 102206, Peoples R China
Kou, Zhaohui
[1
]
Chen, Dayuan
论文数: 0引用数: 0
h-index: 0
机构:
Chinese Acad Sci, State Key Lab Reprod Biol, Beijing 100101, Peoples R ChinaNatl Inst Biol Sci, Beijing 102206, Peoples R China
Chen, Dayuan
[2
]
Gao, Shaorong
论文数: 0引用数: 0
h-index: 0
机构:
Natl Inst Biol Sci, Beijing 102206, Peoples R ChinaNatl Inst Biol Sci, Beijing 102206, Peoples R China
Gao, Shaorong
[1
]
机构:
[1] Natl Inst Biol Sci, Beijing 102206, Peoples R China
[2] Chinese Acad Sci, State Key Lab Reprod Biol, Beijing 100101, Peoples R China
[3] Chinese Acad Sci, Grad Sch, Beijing 100049, Peoples R China
Embryonic stem cells;
Somatic cell nuclear transfer;
DNA methylation;
Imprinting;
EMBRYONIC STEM-CELLS;
DNA METHYLATION;
SOMATIC-CELLS;
MICE;
GENERATION;
FIBROBLASTS;
EXPRESSION;
REGION;
D O I:
10.1016/j.ygeno.2008.09.011
中图分类号:
Q81 [生物工程学(生物技术)];
Q93 [微生物学];
学科分类号:
071005 ;
0836 ;
090102 ;
100705 ;
摘要:
Compared with fertilized embryo derived ES (F-ES) cells, somatic cell nuclear transfer (SCNT) produced ES (NT-ES) cells were proposed appropriate for cell transplantation based therapies. Although previous studies indicated that NT-ES cells and F-ES cells were transcriptionally and functionally indistinguishable, characterization of DNA methylation patterns of imprinted genes in NT-ES cells is lacking. Here, we show that DNA methylation patterns in the differentially methylated region (DMR) of paternally imprinted gene. H19, displayed distinct abnormalities in certain NT-ES and F-ES cell lines after long-term culture in vitro. DNA methylation profiles of H19 appeared very dynamic in most ES cell lines examined, either hypermethylation or hypomethylation could be observed in specific ES cell lines. In contrast to H19, maternally imprinted genes, Mest and Peg3, showed relatively stable methylation patterns in ES cells. especially Peg3, which displayed better capability in enduring long-term culture in vitro. Our results indicate that abnormal methylation profiles of certain imprinted genes could be observed in both NT-ES and F-ES cell lines after long-term culture in vitro although these cell lines were proved to be pluripotent with germline transmission competent. Stringent screening of epigenetically normal NT-ES cells might be potentially necessary for further therapeutic application of these cells. (C) 2008 Elsevier Inc. All rights reserved.