Niemann-Pick C1 is a late endosome-resident protein that transiently associates with lysosomes and the trans-Golgi network

被引:195
作者
Higgins, ME [1 ]
Davies, JP [1 ]
Chen, FW [1 ]
Ioannou, YA [1 ]
机构
[1] Mt Sinai Sch Med, Dept Human Genet, New York, NY 10029 USA
关键词
Niemann-Pick C1; cholesterol transport; low-density lipoprotein-derived cholesterol; endosomes; U18666A;
D O I
10.1006/mgme.1999.2882
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Niemann-Pick type C (NPC) disease is a severe cell lipidosis characterized by the accumulation of unesterified cholesterol in the endosomal/lysosomal system. Recently the primary disease-causing gene, NPC1, was identified, but few clues regarding its potential function(s) could be derived from its predicted amino acid sequence. Therefore, efforts were directed at characterizing the subcellular location of the NPC1 protein. Initial studies with a FLAG-tagged NPC1 cDNA demonstrated that NPC1 is a glycoprotein that associates with the membranes of a population of cytoplasmic vesicles. Immunofluorescence microscopy using anti-NPC1 polyclonal antibodies confirmed this analysis. Double-label immunofluorescence microscopy and subcellular fractionation studies indicated that NPC1 associates predominantly with late endosomes (Rab9 GTPase-positive vesicles) and, to a lesser extent, with lysosomes and the trans-Golgi network. When cholesterol egress from lysosomes was blocked by treatment of cells with U18666A, the NPC1 location shifted from late endosomes to the trans-Golgi network and lysosomes. Subcellular fractionation of liver homogenates from U18666A-treated mice confirmed these observations. These data suggest that U18666A may inhibit the retrograde transport of NPC1 from lysosomes to late endosomes for subsequent transfer to the trans Golgi network. (C) 1999 Academic Press.
引用
收藏
页码:1 / 13
页数:13
相关论文
共 50 条
[1]  
[Anonymous], 1988, Antibodies: A Laboratory Manual
[2]  
Bright NA, 1997, J CELL SCI, V110, P2027
[3]  
CARLSSON SR, 1988, J BIOL CHEM, V263, P18911
[4]   Niemann-Pick C1 disease gene: Homology to mediators of cholesterol homeostasis [J].
Carstea, ED ;
Morris, JA ;
Coleman, KG ;
Loftus, SK ;
Zhang, D ;
Cummings, C ;
Gu, J ;
Rosenfeld, MA ;
Pavan, WJ ;
Krizman, DB ;
Nagle, J ;
Polymeropoulos, MH ;
Sturley, SL ;
Ioannou, YA ;
Higgins, ME ;
Comly, M ;
Cooney, A ;
Brown, A ;
Kaneski, CR ;
BlanchetteMackie, EJ ;
Dwyer, NK ;
Neufeld, EB ;
Chang, TY ;
Liscum, L ;
Strauss, JF ;
Ohno, K ;
Zeigler, M ;
Carmi, R ;
Sokol, J ;
Markie, D ;
ONeill, RR ;
vanDiggelen, OP ;
Elleder, M ;
Patterson, MC ;
Brady, RO ;
Vanier, MT ;
Pentchev, PG ;
Tagle, DA .
SCIENCE, 1997, 277 (5323) :228-231
[5]   COMPARTMENTATION OF THE GOLGI-COMPLEX - BREFELDIN-A DISTINGUISHES TRANS-GOLGI CISTERNAE FROM THE TRANS-GOLGI NETWORK [J].
CHEGE, NW ;
PFEFFER, SR .
JOURNAL OF CELL BIOLOGY, 1990, 111 (03) :893-899
[6]   Rab11 is required for trans-Golgi network to plasma membrane transport and a preferential target for GDP dissociation inhibitor [J].
Chen, W ;
Feng, Y ;
Chen, DY ;
Wandinger-Ness, A .
MOLECULAR BIOLOGY OF THE CELL, 1998, 9 (11) :3241-3257
[7]   CAVEOLIN CYCLES BETWEEN PLASMA-MEMBRANE CAVEOLAE AND THE GOLGI-COMPLEX BY MICROTUBULE-DEPENDENT AND MICROTUBULE-INDEPENDENT STEPS [J].
CONRAD, PA ;
SMART, EJ ;
YING, YS ;
ANDERSON, RGW ;
BLOOM, GS .
JOURNAL OF CELL BIOLOGY, 1995, 131 (06) :1421-1433
[8]  
COXEY RA, 1993, J LIPID RES, V34, P1165
[9]  
DIRACSVEJSTRUP AB, 1994, J BIOL CHEM, V269, P15427
[10]   CAVEOLAE AND SORTING IN THE TRANS-GOLGI NETWORK OF EPITHELIAL-CELLS [J].
DUPREE, P ;
PARTON, RG ;
RAPOSO, G ;
KURZCHALIA, TV ;
SIMONS, K .
EMBO JOURNAL, 1993, 12 (04) :1597-1605