Acute myeloid leukemia with complex karyotypes and abnormal chromosome 21:: Amplification discloses overexpression of APP, ETS2, and ERG genes

被引:145
作者
Baldus, CD
Liyanarachchi, S
Mrózek, K
Auer, H
Tanner, SM
Guimond, M
Ruppert, AS
Mohamed, N
Davuluri, RV
Caligiuri, MA
Bloomfield, CD
de la Chapelle, A [1 ]
机构
[1] Ohio State Univ, Ctr Comprehens Canc, Human Canc Genet Program, Columbus, OH 43210 USA
[2] Ohio State Univ, Ctr Comprehens Canc, Div Hematol Oncol, Columbus, OH 43210 USA
[3] Cancer & Laukemia Grp B Stat Ctr, Durham, NC 27710 USA
关键词
D O I
10.1073/pnas.0400272101
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Molecular mechanisms of leukemogenesis have been successfully unraveled by studying genes involved in simple rearrangements including balanced translocations and inversions. In contrast, little is known about genes altered in complex karyotypic abnormalities. We studied acute myeloid leukemia (AML) patients with complex karyotypes and abnormal chromosome 21. High-resolution bacterial artificial chromosome (BAC) array-based comparative genomic hybridization disclosed amplification predominantly in the 25- to 30-megabase (MB) region that harbors the APP gene (26.3 MB) and at position 38.7-39.1 MB that harbors the transcription factors ERG and ETS2. Using oligonucleotide arrays, APP was by far the most overexpressed gene (mean fold change 19.74, P = 0.0003) compared to a control group of AMI-with normal cytogenetics; ERG and ETS2 also ranked among the most highly expressed chromosome 21 genes. Overexpression of APP and ETS2 correlated with genomic amplification, but high APP expression occurred even in a subset of AML patients with normal cytogenetics (10 of 64, 16%). APP encodes a glycoprotein of unknown function previously implicated in Alzheimer's disease, but not in AML. We hypothesize that APP and the transcription factors ERG and ETS2 are altered by yet unknown molecular mechanisms involved in leukemogenesis. Our results highlight the value of molecularly dissecting leukemic cells with complex karyotypes.
引用
收藏
页码:3915 / 3920
页数:6
相关论文
共 28 条
  • [1] MLL translocations specify a distinct gene expression profile that distinguishes a unique leukemia
    Armstrong, SA
    Staunton, JE
    Silverman, LB
    Pieters, R
    de Boer, ML
    Minden, MD
    Sallan, SE
    Lander, ES
    Golub, TR
    Korsmeyer, SJ
    [J]. NATURE GENETICS, 2002, 30 (01) : 41 - 47
  • [2] Pretreatment cytogenetic abnormalities are predictive of induction success, cumulative incidence of relapse, and overall survival in adult patients with de novo acute myeloid leukemia:: results from Cancer and Leukemia Group B (CALGB 8461)
    Byrd, JC
    Mrózek, K
    Dodge, RK
    Carroll, AJ
    Edwards, CG
    Arthur, DC
    Pettenati, MJ
    Patil, SR
    Rao, KW
    Watson, MS
    Koduru, PRK
    Moore, JO
    Stone, RM
    Mayer, RJ
    Feldman, EJ
    Davey, FR
    Schiffer, CA
    Larson, RA
    Bloomfield, CD
    [J]. BLOOD, 2002, 100 (13) : 4325 - 4336
  • [3] Hansel DE, 2003, CANCER RES, V63, P7032
  • [4] The DNA sequence of human chromosome 21
    Hattori, M
    Fujiyama, A
    Taylor, TD
    Watanabe, H
    Yada, T
    Park, HS
    Toyoda, A
    Ishii, K
    Totoki, Y
    Choi, DK
    Soeda, E
    Ohki, M
    Takagi, T
    Sakaki, Y
    Taudien, S
    Blechschmidt, K
    Polley, A
    Menzel, U
    Delabar, J
    Kumpf, K
    Lehmann, R
    Patterson, D
    Reichwald, K
    Rump, A
    Schillhabel, M
    Schudy, A
    Zimmermann, W
    Rosenthal, A
    Kudoh, J
    Shibuya, K
    Kawasaki, K
    Asakawa, S
    Shintani, A
    Sasaki, T
    Nagamine, K
    Mitsuyama, S
    Antonarakis, SE
    Minoshima, S
    Shimizu, N
    Nordsiek, G
    Hornischer, K
    Brandt, P
    Scharfe, M
    Schön, O
    Desario, A
    Reichelt, J
    Kauer, G
    Blöcker, H
    Ramser, J
    Beck, A
    [J]. NATURE, 2000, 405 (6784) : 311 - 319
  • [5] Spectral karyotyping and fluorescence in situ hybridization detect novel chromosomal aberrations, a recurring involvement of chromosome 21 and amplification of the MYC oncogene in acute myeloid leukaemia M2
    Hilgenfeld, E
    Padilla-Nash, H
    McNeil, N
    Knutsen, T
    Montagna, C
    Tchinda, J
    Horst, J
    Ludwig, WD
    Serve, H
    Büchner, T
    Berdel, WE
    Schröck, E
    Ried, T
    [J]. BRITISH JOURNAL OF HAEMATOLOGY, 2001, 113 (02) : 305 - 317
  • [6] ICHIKAWA H, 1994, CANCER RES, V54, P2865
  • [7] CT53518, a novel selective FLT3 antagonist for the treatment of acute myelogenous leukemia (AML)
    Kelly, LM
    Yu, JC
    Boulton, CL
    Apatira, M
    Li, J
    Sullivan, CM
    Williams, I
    Amaral, SM
    Curley, DP
    Duclos, N
    Neuberg, D
    Scarborough, RM
    Pandey, A
    Hollenbach, S
    Abe, K
    Lokker, NA
    Gilliland, DG
    Giese, NA
    [J]. CANCER CELL, 2002, 1 (05) : 421 - 432
  • [8] Model-based analysis of oligonucleotide arrays: Expression index computation and outlier detection
    Li, C
    Wong, WH
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2001, 98 (01) : 31 - 36
  • [9] Regulation of amyloid precursor protein expression and secretion via activation of ERK1/2 by hepatocyte growth factor in HEK293 cells transfected with APP751
    Liu, F
    Su, YA
    Li, BL
    Ni, BH
    [J]. EXPERIMENTAL CELL RESEARCH, 2003, 287 (02) : 387 - 396
  • [10] Oncogenic transcription factors in the human acute leukemias
    Look, AT
    [J]. SCIENCE, 1997, 278 (5340) : 1059 - 1064