Regularity of irregular subdivision

被引:63
作者
Daubechies, I [1 ]
Guskov, I
Sweldens, W
机构
[1] Princeton Univ, Program Appl & Computat Math, Princeton, NJ 08544 USA
[2] AT&T Bell Labs, Lucent Technol, Murray Hill, NJ 07974 USA
关键词
regularity; irregular samples; subdivision; interpolation; scaling function; wavelet;
D O I
10.1007/s003659900114
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study the smoothness of the limit function for one-dimensional unequally spaced interpolating subdivision schemes. The new grid points introduced at every level can lie in irregularly spaced locations between old, adjacent grid points and not only midway as is usually the case. For the natural generalization of the four-point scheme introduced by Dubuc and Dyn, Levin, and Gregory, we show that, under some geometric restrictions, the limit function is always C-1; under slightly stronger restrictions we show that the limit function is almost C-2, the same regularity as in the regularly spaced case.
引用
收藏
页码:381 / 426
页数:46
相关论文
共 41 条
[1]  
[Anonymous], ACM SIGGRARH COURSE
[2]  
[Anonymous], 1997, SIAM J MATH ANAL
[3]  
CAVARETTA AS, 1987, COMPUT AIDED GEOM D, V4, P321
[4]  
CAVARETTA AS, 1991, MEM AM MATH SOC, V93
[5]  
CAVARETTI AS, 1989, MATH ASPECTS COMPUTE
[6]  
CHAIKIN GM, 1974, COMPUT GRAPHICS IMAG, V3, P346
[7]   BIORTHOGONAL BASES OF COMPACTLY SUPPORTED WAVELETS [J].
COHEN, A ;
DAUBECHIES, I ;
FEAUVEAU, JC .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1992, 45 (05) :485-560
[8]  
Coifman RR., 1971, Lect. Notes Math., DOI 10.1007/BFb0058946
[9]   2-SCALE DIFFERENCE-EQUATIONS .1. EXISTENCE AND GLOBAL REGULARITY OF SOLUTIONS [J].
DAUBECHIES, I ;
LAGARIAS, JC .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1991, 22 (05) :1388-1410
[10]   2-SCALE DIFFERENCE-EQUATIONS .2. LOCAL REGULARITY, INFINITE PRODUCTS OF MATRICES AND FRACTALS [J].
DAUBECHIES, I ;
LAGARIAS, JC .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1992, 23 (04) :1031-1079