Functional Characterization of the GATA Transcription Factors GNC and CGA1 Reveals Their Key Role in Chloroplast Development, Growth, and Division in Arabidopsis

被引:162
作者
Chiang, Yi-Hsuan [1 ]
Zubo, Yan O. [1 ]
Tapken, Wiebke [2 ]
Kim, Hyo Jung [1 ]
Lavanway, Ann M. [1 ]
Howard, Louisa [1 ]
Pilon, Marinus [2 ]
Kieber, Joseph J. [3 ]
Schaller, G. Eric [1 ]
机构
[1] Dartmouth Coll, Dept Biol Sci, Hanover, NH 03755 USA
[2] Colorado State Univ, Dept Biol, Ft Collins, CO 80523 USA
[3] Univ N Carolina, Dept Biol, Chapel Hill, NC 27599 USA
基金
美国国家科学基金会;
关键词
NADPH-PROTOCHLOROPHYLLIDE OXIDOREDUCTASE; PHYTOCHROME-INTERACTING FACTORS; B RESPONSE REGULATORS; GENE-EXPRESSION; CHLOROPHYLL FLUORESCENCE; CELL-DIFFERENTIATION; CYTOKININ RESPONSES; SIGNAL-TRANSDUCTION; MICROARRAY ANALYSIS; PLANT DEVELOPMENT;
D O I
10.1104/pp.112.198705
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Chloroplasts develop from proplastids in a process that requires the interplay of nuclear and chloroplast genomes, but key steps in this developmental process have yet to be elucidated. Here, we show that the nucleus-localized transcription factors GATA NITRATE-INDUCIBLE CARBON-METABOLISM-INVOLVED (GNC) and CYTOKININ-RESPONSIVE GATA1 (CGA1) regulate chloroplast development, growth, and division in Arabidopsis (Arabidopsis thaliana). GNC and CGA1 are highly expressed in green tissues, and the phytohormone cytokinin regulates their expression. A gnc cga1 mutant exhibits a reduction in overall chlorophyll levels as well as in chloroplast size in the hypocotyl. Ectopic overexpression of either GNC or CGA1 promotes chloroplast biogenesis in hypocotyl cortex and root pericycle cells, based on increases in the number and size of the chloroplasts, and also results in expanded zones of chloroplast production into the epidermis of hypocotyls and cotyledons and into the cortex of roots. Ectopic overexpression also promotes the development of etioplasts from proplastids in dark-grown seedlings, subsequently enhancing the deetiolation process. Inducible expression of GNC demonstrates that GNC-mediated chloroplast biogenesis can be regulated postembryonically, notably so for chloroplast production in cotyledon epidermal cells. Analysis of the gnc cga1 loss-of-function and overexpression lines supports a role for these transcription factors in regulating the effects of cytokinin on chloroplast division. These data support a model in which GNC and CGA1 serve as two of the master transcriptional regulators of chloroplast biogenesis, acting downstream of cytokinin and mediating the development of chloroplasts from proplastids and enhancing chloroplast growth and division in specific tissues.
引用
收藏
页码:332 / 348
页数:17
相关论文
共 72 条
[1]   A glucocorticoid-mediated transcriptional induction system in transgenic plants [J].
Aoyama, T ;
Chua, NH .
PLANT JOURNAL, 1997, 11 (03) :605-612
[2]   Type B response regulators of Arabidopsis play key roles in cytokinin signaling and plant development [J].
Argyros, Rebecca D. ;
Mathews, Dennis E. ;
Chiang, Yi-Hsuan ;
Palmer, Christine M. ;
Thibault, Derek M. ;
Etheridge, Naomi ;
Argyros, D. Aaron ;
Mason, Michael G. ;
Kieber, Joseph J. ;
Schaller, G. Eric .
PLANT CELL, 2008, 20 (08) :2102-2116
[3]   IDENTIFICATION OF NADPH-PROTOCHLOROPHYLLIDE OXIDOREDUCTASE-A AND OXIDOREDUCTASE-B - A BRANCHED PATHWAY FOR LIGHT-DEPENDENT CHLOROPHYLL BIOSYNTHESIS IN ARABIDOPSIS-THALIANA [J].
ARMSTRONG, GA ;
RUNGE, S ;
FRICK, G ;
SPERLING, U ;
APEL, K .
PLANT PHYSIOLOGY, 1995, 108 (04) :1505-1517
[4]   Genetic analysis of Arabidopsis GATA transcription factor gene family reveals a nitrate-inducible member important for chlorophyll synthesis and glucose sensitivity [J].
Bi, YM ;
Zhang, Y ;
Signorelli, T ;
Zhao, R ;
Zhu, T ;
Rothstein, S .
PLANT JOURNAL, 2005, 44 (04) :680-692
[5]   Immediate-early and delayed cytokinin response genes of Arabidopsis thaliana identified by genome-wide expression profiling reveal novel cytokinin-sensitive processes and suggest cytokinin action through transcriptional cascades [J].
Brenner, WG ;
Romanov, GA ;
Köllmer, I ;
Bürkle, L ;
Schmülling, T .
PLANT JOURNAL, 2005, 44 (02) :314-333
[6]   Laser capture microdissection for the analysis of gene expression during embryogenesis of Arabidopsis [J].
Casson, S ;
Spencer, M ;
Walker, K ;
Lindsey, K .
PLANT JOURNAL, 2005, 42 (01) :111-123
[7]   MUTATIONS IN THE DET1 GENE AFFECT CELL-TYPE-SPECIFIC EXPRESSION OF LIGHT-REGULATED GENES AND CHLOROPLAST DEVELOPMENT IN ARABIDOPSIS [J].
CHORY, J ;
PETO, CA .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1990, 87 (22) :8776-8780
[8]   A ROLE FOR CYTOKININS IN DE-ETIOLATION IN ARABIDOPSIS - DET MUTANTS HAVE AN ALTERED RESPONSE TO CYTOKININS [J].
CHORY, J ;
REINECKE, D ;
SIM, S ;
WASHBURN, T ;
BRENNER, M .
PLANT PHYSIOLOGY, 1994, 104 (02) :339-347
[9]   Floral dip:: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana [J].
Clough, SJ ;
Bent, AF .
PLANT JOURNAL, 1998, 16 (06) :735-743
[10]   Copper Delivery by the Copper Chaperone for Chloroplast and Cytosolic Copper/Zinc-Superoxide Dismutases: Regulation and Unexpected Phenotypes in an Arabidopsis Mutant [J].
Cohu, Christopher M. ;
Abdel-Ghany, Salah E. ;
Reynolds, Kathryn A. Gogolin ;
Onofrio, Alexander M. ;
Bodecker, Jared R. ;
Kimbrel, Jeffrey A. ;
Niyogi, Krishna K. ;
Pilon, Marinus .
MOLECULAR PLANT, 2009, 2 (06) :1336-1350