The inositol trisphosphate receptor antagonist 2-aminoethoxydiphenylborate (2-APB) blocks Ca2+ entry channels in human platelets:: cautions for its use in studying Ca2+ influx

被引:91
作者
Diver, JM
Sage, SO
Rosado, JA
机构
[1] Univ Cambridge, Physiol Lab, Cambridge CB2 3EG, England
[2] Univ Extremadura, Dept Physiol, Caceres, Spain
关键词
D O I
10.1054/ceca.2001.0239
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
It has been reported that store-mediated Ca2+ entry (SMCE) in human platelets is likely to be mediated by a secretion-like coupling mechanism. Recently, 2-aminoethoxydiphenylborate (2-APB) has been used in the investigation of SMCE. Here, the mechanism of action of 2-APB is investigated in human platelets. In a Ca2+-free medium (EGTA added), addition of 0.1 U/ml thrombin caused an elevation in [Ca2+](i). Preincubation with 100 muM 2-APB for 170s abolished the release of internal Ca2+. In platelets whose internal Ca2+ stores had been depleted by treatment with 200 nM thapsigargin, addition of extracellular Ca2+ caused an elevation in [Ca2+](i) indicative of SMCE. Preincubation with 2-APB decreased SMCE by 95.5 +/- 1.1%. After activation of SMCE, addition of 2-APB rapidly decreased [Ca2+](i) to basal levels; in contrast, the coupling between Trp1 and IP3RII, which has been shown to play an important role in SMCE in platelets, remained intact at the same time points. The rate of decrease of [Ca2+](i) and the absence of measurable latency in the effect of 2-APB were comparable to the effects of La3+ (a cation channel blocker). These data suggest that 2-APB may act as a blocker of Ca2+ permeable plasma membrane channels. These data provide further information regarding the mechanism and site of action of 2-APB and highlight the necessity of careful interpretation of work performed using this molecule. (C) 2001 Harcourt Publishers Ltd.
引用
收藏
页码:323 / 329
页数:7
相关论文
共 28 条
[1]   CYTOCHROME-P-450 MAY LINK INTRACELLULAR CA2+ STORES WITH PLASMA-MEMBRANE CA2+ INFLUX [J].
ALVAREZ, J ;
MONTERO, M ;
GARCIASANCHO, J .
BIOCHEMICAL JOURNAL, 1991, 274 :193-197
[2]   CALCIUM ENTRY AND TRANSMITTER RELEASE AT VOLTAGE-CLAMPED NERVE-TERMINALS OF SQUID [J].
AUGUSTINE, GJ ;
CHARLTON, MP ;
SMITH, SJ .
JOURNAL OF PHYSIOLOGY-LONDON, 1985, 367 (OCT) :163-181
[3]   An examination of the secretion-like coupling model for the activation of the Ca2+ release-activated Ca2+ current ICRAC in RBL-1 cells [J].
Bakowski, D ;
Glitsch, MD ;
Parekh, AB .
JOURNAL OF PHYSIOLOGY-LONDON, 2001, 532 (01) :55-71
[4]   CAPACITATIVE CALCIUM-ENTRY [J].
BERRIDGE, MJ .
BIOCHEMICAL JOURNAL, 1995, 312 :1-11
[5]   Modulation of Ca2+ entry by polypeptides of the inositol 1,4,5-trisphosphate receptor (IP3R) that bind transient receptor potential (TRP):: Evidence for roles of TRP and IP3R in store depletion-activated Ca2+ entry [J].
Boulay, G ;
Brown, DM ;
Qin, N ;
Jiang, MS ;
Dietrich, A ;
Zhu, MX ;
Chen, ZG ;
Birnbaumer, M ;
Mikoshiba, K ;
Birnbaumer, L .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1999, 96 (26) :14955-14960
[6]   Role of the phospholipase C-inositol 1,4,5-trisphosphate pathway in calcium release-activated calcium current and capacitative calcium entry [J].
Broad, LM ;
Braun, FJ ;
Lievremont, JP ;
Bird, GSJ ;
Kurosaki, T ;
Putney, JW .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2001, 276 (19) :15945-15952
[7]   Calcium oscillations increase the efficiency and specificity of gene expression [J].
Dolmetsch, RE ;
Xu, KL ;
Lewis, RS .
NATURE, 1998, 392 (6679) :933-936
[8]  
FASOLATO C, 1993, J BIOL CHEM, V268, P20737
[9]   Xestospongins: Potent membrane permeable blockers of the inositol 1,4,5-trisphosphate receptor [J].
Gafni, J ;
Munsch, JA ;
Lam, TH ;
Catlin, MC ;
Costa, LG ;
Molinski, TF ;
Pessah, IN .
NEURON, 1997, 19 (03) :723-733
[10]  
GRYNKIEWICZ G, 1985, J BIOL CHEM, V260, P3440