An Entry/Gateway® cloning system for general expression of genes with molecular tags in Drosophila melanogaster

被引:25
作者
Akbari, Omar S. [1 ]
Oliver, Daniel [1 ]
Eyer, Katie [1 ]
Pai, Chi-Yun [1 ]
机构
[1] Univ Nevada, Dept Biol, Reno, NV 89557 USA
来源
BMC CELL BIOLOGY | 2009年 / 10卷
关键词
POLYTENE CHROMOSOMES; CHROMATIN INSULATOR; UBIQUITIN GENES; PROTEIN; CLONES; CP190; DISC; DNA;
D O I
10.1186/1471-2121-10-8
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
Background: Tagged fusion proteins are priceless tools for monitoring the activities of biomolecules in living cells. However, over-expression of fusion proteins sometimes leads to the unwanted lethality or developmental defects. Therefore, vectors that can express tagged proteins at physiological levels are desirable tools for studying dosage-sensitive proteins. We developed a set of Entry/Gateway (R) vectors for expressing fluorescent fusion proteins in Drosophila melanogaster. The vectors were used to generate fluorescent CP190 which is a component of the gypsy chromatin insulator. We used the fluorescent CP190 to study the dynamic movement of related chromatin insulators in living cells. Results: The Entry/Gateway (R) system is a timesaving technique for quickly generating expression constructs of tagged fusion proteins. We described in this study an Entry/Gateway (R) based system, which includes six P-element destination vectors (P-DEST) for expressing tagged proteins (eGFP, mRFP, or myc) in Drosophila melanogaster and a TA-based cloning vector for generating entry clones from unstable DNA sequences. We used the P-DEST vectors to express fluorecent CP190 at tolerable levels. Expression of CP190 using the UAS/Gal4 system, instead, led to either lethality or underdeveloped tissues. The expressed eGFP- or mRFP-tagged CP190 proteins are fully functional and rescued the lethality of the homozygous CP190 mutation. We visualized a wide range of CP190 distribution patterns in living cell nuclei, from thousands of tiny particles to less than ten giant ones, which likely reflects diverse organization of higher-order chromatin structures. We also visualized the fusion of multiple smaller insulator bodies into larger aggregates in living cells, which is likely reflective of the dynamic activities of reorganization of chromatin in living nuclei. Conclusion: We have developed an efficient cloning system for expressing dosage-sensitive proteins in Drosophila melanogaster. This system successfully expresses functional fluorescent CP190 fusion proteins. The fluorescent CP190 proteins exist in insulator bodies of various numbers and sizes among cells from multiple living tissues. Furthermore, live imaging of the movements of these fluorescent-tagged proteins suggests that the assembly and disassembly of insulator bodies are normal activities in living cells and may be directed for regulating transcription.
引用
收藏
页数:11
相关论文
共 17 条
[1]   STRUCTURE AND EXPRESSION OF THE DROSOPHILA UBIQUITIN-52-AMINO-ACID FUSION-PROTEIN GENE [J].
CABRERA, HL ;
BARRIO, R ;
ARRIBAS, C .
BIOCHEMICAL JOURNAL, 1992, 286 :281-288
[2]   Using a modified TA cloning method to create entry clones [J].
Chen, Qi-Jun ;
Zhou, Hai-Meng ;
Chen, Jia ;
Wang, Xue-Chen .
ANALYTICAL BIOCHEMISTRY, 2006, 358 (01) :120-125
[3]   Concerted assembly and cloning of multiple DNA segments using in vitro site-specific recombination: Functional analysis of multi-segment expression clones [J].
Cheo, DL ;
Titus, SA ;
Byrd, DRN ;
Hartley, JL ;
Temple, GF ;
Brasch, MA .
GENOME RESEARCH, 2004, 14 (10B) :2111-2120
[4]   Coordinated control of dCTCF and gypsy chromatin insulators in Drosophila [J].
Gerasimova, Tatiana I. ;
Lei, Elissa P. ;
Bushey, Ashley M. ;
Corces, Victor G. .
MOLECULAR CELL, 2007, 28 (05) :761-772
[5]   A chromatin insulator determines the nuclear localization of DNA [J].
Gerasimova, TI ;
Byrd, K ;
Corces, VG .
MOLECULAR CELL, 2000, 6 (05) :1025-1035
[6]   Construction of transgenic Drosophila by using the site-specific integrase from phage φC31 [J].
Groth, AC ;
Fish, M ;
Nusse, R ;
Calos, MP .
GENETICS, 2004, 166 (04) :1775-1782
[7]   UBIQUITIN GENES AND UBIQUITIN PROTEIN LOCATION IN POLYTENE CHROMOSOMES OF DROSOPHILA [J].
IZQUIERDO, M .
CHROMOSOMA, 1994, 103 (03) :193-197
[8]   STRUCTURE AND EXPRESSION OF UBIQUITIN GENES OF DROSOPHILA-MELANOGASTER [J].
LEE, HS ;
SIMON, JA ;
LIS, JT .
MOLECULAR AND CELLULAR BIOLOGY, 1988, 8 (11) :4727-4735
[9]   The Drosophila insulator proteins CTCF and CP190 link enhancer blocking to body patterning [J].
Mohan, Man ;
Bartkuhn, Marek ;
Herold, Martin ;
Philippen, Angela ;
Heinl, Nina ;
Bardenhagen, Imke ;
Leers, Joerg ;
White, Robert A. H. ;
Renkawitz-Pohl, Renate ;
Saumweber, Harald ;
Renkawitz, Rainer .
EMBO JOURNAL, 2007, 26 (19) :4203-4214
[10]   decapentaplegic overexpression affects Drosophila wing and leg imaginal disc development and wingless expression [J].
Morimura, S ;
Maves, L ;
Chen, YJ ;
Hoffmann, FM .
DEVELOPMENTAL BIOLOGY, 1996, 177 (01) :136-151