Surface chemistry of metal oxide coated lithium manganese nickel oxide thin film cathodes studied by XPS

被引:154
作者
Baggetto, Loic [1 ]
Dudney, Nancy J. [1 ]
Veith, Gabriel M. [1 ]
机构
[1] Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA
关键词
Lithium manganese nickel oxide; Metal oxide coating; Thin films; Lithium-ion; Surface chemistry; X-ray photoelectron spectroscopy; ELECTROCHEMICAL PROPERTIES; LINI0.5MN1.5O4; SPINEL; ELECTROLYTE INTERFACE; ION BATTERIES; LI; SPECTROSCOPY; PERFORMANCE; SPECTRA;
D O I
10.1016/j.electacta.2012.11.120
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
The effect of coating the high voltage spinel cathode LiMn1.5Ni0.5O4 with three metal oxide thin layers is discussed. Instead of the typical powder electrodes with poorly defined surface coatings, thin film electrodes were prepared with well-defined oxide coating thicknesses to investigate the influence of coating on surface reactivity via X-ray photoelectron spectroscopy (XPS). ZnO is found to decompose during the first charge whereas Al2O3 and ZrO2 are stable for more than 100 cycles. ZrO2, however, importantly limits the available Li storage capacity of the electrochemical reaction due to poorer kinetics. Al2O3 offers the best results in term of capacity retention. Upon cycling, the evidence of a signal at 75.4 eV in the Al2p binding energy spectrum indicates the partial fluorination of Al2O3 into, perhaps, Al2O2F2. Moreover, the continuous formation of ethers, esters and LixPOyFz compounds on the surface of the electrodes is found for all coating materials. (c) 2012 Elsevier Ltd. All rights reserved.
引用
收藏
页码:135 / 147
页数:13
相关论文
共 42 条
[1]   Poly(ethylene carbonate)s, part I: Syntheses and structural effects on biodegradation [J].
Acemoglu, M ;
Nimmerfall, F ;
Bantle, S ;
Stoll, GH .
JOURNAL OF CONTROLLED RELEASE, 1997, 49 (2-3) :263-276
[2]   Topotactic two-phase reactions of Li[Ni1/2Mn3/2]O4 (P4332) in nonaqueous lithium cells [J].
Ariyoshi, K ;
Iwakoshi, Y ;
Nakayama, N ;
Ohzuku, T .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2004, 151 (02) :A296-A303
[3]   Effects of coating with gold on the performance of nanosized LiNi0.5Mn1.5O4 for lithium batteries [J].
Arrebola, J. ;
Caballero, A. ;
Hernan, L. ;
Morales, J. ;
Castellon, E. Rodriguez ;
Barrado, J. R. Ramos .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2007, 154 (03) :A178-A184
[4]   Electrochemical properties of LiNi0.5Mn1.5O4 films prepared by spin-coating deposition [J].
Arrebola, Jose C. ;
Caballero, Alvaro ;
Hernan, Lourdes ;
Melero, Montserrat ;
Morales, Julian ;
Castellon, Enrique R. .
JOURNAL OF POWER SOURCES, 2006, 162 (01) :606-613
[5]   Valence-band x-ray photoelectron spectroscopic studies of manganese and its oxides interpreted by cluster and band structure calculations [J].
Audi, AA ;
Sherwood, PMA .
SURFACE AND INTERFACE ANALYSIS, 2002, 33 (03) :274-282
[6]   Fabrication and characterization of Li-Mn-Ni-O sputtered thin film high voltage cathodes for Li-ion batteries [J].
Baggetto, Loic ;
Unocic, Raymond R. ;
Dudney, Nancy J. ;
Veith, Gabriel M. .
JOURNAL OF POWER SOURCES, 2012, 211 :108-118
[7]   XPS analysis of β-AlF3 phases with Al successively substituted by Mg to be used for heterogeneously catalyzed Cl/F exchange reactions [J].
Bose, O ;
Kemnitz, E ;
Lippitz, A ;
Unger, WES .
APPLIED SURFACE SCIENCE, 1997, 120 (3-4) :181-190
[8]   Electrode/Electrolyte Interface Reactivity in High-Voltage Spinel LiMn1.6Ni0.4O4/Li4Ti5O12 Lithium-Ion Battery [J].
Dedryvere, R. ;
Foix, D. ;
Franger, S. ;
Patoux, S. ;
Daniel, L. ;
Gonbeau, D. .
JOURNAL OF PHYSICAL CHEMISTRY C, 2010, 114 (24) :10999-11008
[9]   In situ Raman spectroscopic studies of LiNixMn2-xO4 thin film cathode materials for lithium ion secondary batteries [J].
Dokko, K ;
Mohamedi, M ;
Anzue, N ;
Itoh, T ;
Uchida, I .
JOURNAL OF MATERIALS CHEMISTRY, 2002, 12 (12) :3688-3693
[10]   Study of the LiMn1.5Ni0.5O4/Electrolyte Interface at Room Temperature and 60°C [J].
Duncan, Hugues ;
Duguay, Dominique ;
Abu-Lebdeh, Yaser ;
Davidson, Isobel J. .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2011, 158 (05) :A537-A545