Path-crossing exponents and the external perimeter in 2D percolation

被引:78
作者
Aizenman, M
Duplantier, B
Aharony, A
机构
[1] Princeton Univ, Dept Phys, Princeton, NJ 08544 USA
[2] Dept Math, Princeton, NJ 08544 USA
[3] Serv Phys Theor Saclay, F-91191 Gif Sur Yvette, France
[4] Tel Aviv Univ, Raymond & Beverly Sackler Fac Exact Sci, Sch Phys & Astron, IL-69978 Tel Aviv, Israel
关键词
D O I
10.1103/PhysRevLett.83.1359
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
2D percolation path exponents x(l)(P) describe probabilities for traversals of annuli by l nonoverlapping paths on either occupied or vacant clusters, with at least one of each type. We relate the probabilities rigorously to amplitudes of O(N = 1) models whose exponents, believed to be exact, yield x(l)(P) (l(2) - 1)/12. This extends to half-integers the Saleur-Duplantier exponents for k = l/2 clusters, yields the exact fractal dimension of the external cluster perimeter, D-EP = 2 - x(3)(P) = 4/3, and also explains the absence of narrow gate fjords, which was originally noted by Grossman and Aharony.
引用
收藏
页码:1359 / 1362
页数:4
相关论文
共 34 条
[1]   Holder regularity and dimension bounds for random curves [J].
Aizenman, M ;
Burchard, A .
DUKE MATHEMATICAL JOURNAL, 1999, 99 (03) :419-453
[2]  
AIZENMAN M, 1998, IMA VOLUMES MATH, V99
[3]  
AIZENMAN ML, IN PRESS
[4]  
AIZENMAN MN, 1996, STATPHYS, V19
[5]   Corrosion front roughening in two-dimensional pitting of aluminum thin layers [J].
Balazs, L .
PHYSICAL REVIEW E, 1996, 54 (02) :1183-1189
[6]   CONFORMAL ANOMALY AND SCALING DIMENSIONS OF THE O(N) MODEL FROM AN EXACT SOLUTION ON THE HONEYCOMB LATTICE [J].
BATCHELOR, MT ;
BLOTE, HWJ .
PHYSICAL REVIEW LETTERS, 1988, 61 (02) :138-140
[7]   EXACT SOLUTION AND SURFACE CRITICAL-BEHAVIOR OF AN O(N) MODEL ON THE HONEYCOMB LATTICE [J].
BATCHELOR, MT ;
SUZUKI, J .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1993, 26 (16) :L729-L735
[8]   GRAVITY INVASION PERCOLATION IN 2 DIMENSIONS - EXPERIMENT AND SIMULATION [J].
BIROVLJEV, A ;
FURUBERG, L ;
FEDER, J ;
JOSSANG, T ;
MALOY, KJ ;
AHARONY, A .
PHYSICAL REVIEW LETTERS, 1991, 67 (05) :584-587
[9]   The number of incipient spanning clusters in two-dimensional percolation [J].
Cardy, J .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1998, 31 (05) :L105-L110
[10]   CRITICAL PERCOLATION IN FINITE GEOMETRIES [J].
CARDY, JL .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1992, 25 (04) :L201-L206