P19-dependent and P19-independent reversion of F1-V gene silencing in tomato

被引:24
作者
Alvarez, M. Lucrecia [1 ,2 ]
Pinyerd, Heidi L. [1 ,2 ]
Topal, Emel [1 ,2 ]
Cardineau, Guy A. [1 ,2 ]
机构
[1] Arizona State Univ, CIDV, Biodesign Inst, Tempe, AZ 85287 USA
[2] Arizona State Univ, Sch Life Sci, Tempe, AZ 85287 USA
关键词
P19; PTGS; RNA silencing; tomato; transgenic plants; viral suppressor;
D O I
10.1007/s11103-008-9352-2
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
As a part of a project to develop a plant-made plague vaccine, we expressed the Yersinia pestis F1-V antigen fusion protein in tomato. We discovered that in some of these plants the expression of the f1-v gene was undetectable in leaves and fruit by ELISA, even though they had multiple copies of f1-v according to Southern-blot analysis. A likely explanation of these results is the phenomenon of RNA silencing, a group of RNA-based processes that produces sequence-specific inhibition of gene expression and may result in transgene silencing in plants. Here we report the reversion of the f1-v gene silencing in transgenic tomato plants through two different mechanisms. In the P19-dependent Reversion or Type I, the viral suppressor of gene silencing, P19, induces the reversion of gene silencing. In the P19-independent Reversion or Type II, the f1-v gene expression is restored after the substantial loss of gene copies as a consequence of transgene segregation in the progeny. The transient and stable expression of the p19 gene driven by a constitutive promoter as well as an ethanol inducible promoter induced a P19-dependent reversion of f1-v gene silencing. In particular, the second generation plant 3D1.6 had the highest P19 protein levels and correlated with the highest F1-V protein accumulation, almost a three-fold increase of F1-V protein levels in fruit than that previously reported for the non-silenced F1-V elite tomato lines. These results confirm the potential exploitation of P19 to substantially increase the expression of value-added proteins in plants.
引用
收藏
页码:61 / 79
页数:19
相关论文
共 61 条
[1]   Plant-made subunit vaccine against pneumonic and bubonic plague is orally immunogenic in mice [J].
Alvarez, ML ;
Pinyerd, HL ;
Crisantes, JD ;
Rigano, MM ;
Pinkhasov, J ;
Walmsley, AM ;
Mason, HS ;
Cardineau, GA .
VACCINE, 2006, 24 (14) :2477-2490
[2]   Silencing of HMW glutenins in transgenic wheat expressing extra HMW subunits [J].
Alvarez, ML ;
Guelman, S ;
Halford, NG ;
Lustig, S ;
Reggiardo, MI ;
Ryabushkina, N ;
Shewry, P ;
Stein, J ;
Vallejos, RH .
THEORETICAL AND APPLIED GENETICS, 2000, 100 (02) :319-327
[3]   RNA silencing in plants [J].
Baulcombe, D .
NATURE, 2004, 431 (7006) :356-363
[4]   NEW PLANT BINARY VECTORS WITH SELECTABLE MARKERS LOCATED PROXIMAL TO THE LEFT T-DNA BORDER [J].
BECKER, D ;
KEMPER, E ;
SCHELL, J ;
MASTERSON, R .
PLANT MOLECULAR BIOLOGY, 1992, 20 (06) :1195-1197
[5]   A branched pathway for transgene-induced RNA silencing in plants [J].
Béclin, C ;
Boutet, S ;
Waterhouse, P ;
Vaucheret, H .
CURRENT BIOLOGY, 2002, 12 (08) :684-688
[6]   Role for a bidentate ribonuclease in the initiation step of RNA interference [J].
Bernstein, E ;
Caudy, AA ;
Hammond, SM ;
Hannon, GJ .
NATURE, 2001, 409 (6818) :363-366
[7]  
BRADFORD MM, 1976, ANAL BIOCHEM, V72, P248, DOI 10.1016/0003-2697(76)90527-3
[8]   The diversity of RNA silencing pathways in plants [J].
Brodersen, Peter ;
Voinnet, Olivier .
TRENDS IN GENETICS, 2006, 22 (05) :268-280
[9]   Viral RNA silencing suppressors inhibit the microRNA pathway at an intermediate step [J].
Chapman, EJ ;
Prokhnevsky, AI ;
Gopinath, K ;
Dolja, VV ;
Carrington, JC .
GENES & DEVELOPMENT, 2004, 18 (10) :1179-1186
[10]  
Curtiss RI, 1990, World Patent Application, Patent No. [WO 90/ 02484, 9002484]