A posteriori error estimation in finite element analysis

被引:591
作者
Ainsworth, M [1 ]
Oden, JT [1 ]
机构
[1] UNIV TEXAS,TEXAS INST COMPUTAT & APPL MATH,AUSTIN,TX 78712
关键词
D O I
10.1016/S0045-7825(96)01107-3
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
This monograph presents a summary account of the subject of a posteriori error estimation for finite element approximations of problems in mechanics. The study primarily focuses on methods for linear elliptic boundary value problems. However, error estimation for unsymmetrical systems, nonlinear problems, including the Navier-Stokes equations, and indefinite problems, such as represented by the Stokes problem are included. The main thrust is to obtain error estimators for the error measured in the energy norm, but techniques for other norms are also discussed.
引用
收藏
页码:1 / 88
页数:88
相关论文
共 63 条
[1]  
ADAMS RA, 1978, PURE APPL AMTH SERIE, V65
[2]   A UNIFIED APPROACH TO A POSTERIORI ERROR ESTIMATION USING ELEMENT RESIDUAL METHODS [J].
AINSWORTH, M ;
ODEN, JT .
NUMERISCHE MATHEMATIK, 1993, 65 (01) :23-50
[3]   A POSTERIORI ERROR ESTIMATORS FOR 2ND-ORDER ELLIPTIC-SYSTEMS .2. AN OPTIMAL ORDER PROCESS FOR CALCULATING SELF-EQUILIBRATING FLUXES [J].
AINSWORTH, M ;
ODEN, JT .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 1993, 26 (09) :75-87
[4]  
AINSWORTH M, IN PRESS NUMER MATH
[5]  
AINSWORTH M, IN PRESS SIAM J NUME
[6]  
AINSWORTH M, 1991, NUMER MATH, V60, P429
[7]  
Ainsworth M., 1994, NUMER METH PDE, V10, P609
[8]  
[Anonymous], RAIRO RAN R
[9]  
AUBIN JP, 1970, NUMERICAL SOLUTION P
[10]   THE OPTIMAL CONVERGENCE RATE OF THE P-VERSION OF THE FINITE-ELEMENT METHOD [J].
BABUSKA, I ;
SURI, M .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1987, 24 (04) :750-776