An elegant solution of the n-body Toda problem

被引:19
作者
Anderson, A
机构
[1] UNIV LONDON IMPERIAL COLL SCI & TECHNOL,BLACKETT LAB,LONDON SW7 2BZ,ENGLAND
[2] ISAAC NEWTON INST,CAMBRIDGE CB3 0EH,ENGLAND
[3] UNIV N CAROLINA,DEPT PHYS & ASTRON,CHAPEL HILL,NC 27599
关键词
D O I
10.1063/1.531465
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The solution of the classical open-chain n-body Toda problem is derived from an ansatz and is found to have a highly symmetric form. The proof requires an unusual identity involving Vandermonde determinants. The explicit transformation to action-angle variables is exhibited. (C) 1996 American Institute of Physics.
引用
收藏
页码:1349 / 1355
页数:7
相关论文
共 13 条
[1]   CANONICAL-TRANSFORMATIONS IN QUANTUM-MECHANICS [J].
ANDERSON, A .
ANNALS OF PHYSICS, 1994, 232 (02) :292-331
[2]   THE MULTIVALUED FREE-FIELD MAPS OF LIOUVILLE AND TODA GRAVITIES [J].
ANDERSON, A ;
NILSSON, BEW ;
POPE, CN ;
STELLE, KS .
NUCLEAR PHYSICS B, 1994, 430 (01) :107-152
[3]  
[Anonymous], LECTURE NOTES PHYSIC
[4]   ONE-DIMENSIONAL TODA MOLECULE .1. GENERAL-SOLUTION [J].
FARWELL, R ;
MINAMI, M .
PROGRESS OF THEORETICAL PHYSICS, 1983, 69 (04) :1091-1115
[5]   TODA LATTICE .2. EXISTENCE OF INTEGRALS [J].
FLASCHKA, H .
PHYSICAL REVIEW B, 1974, 9 (04) :1924-1925
[6]   INTEGRALS OF TODA LATTICE [J].
HENON, M .
PHYSICAL REVIEW B, 1974, 9 (04) :1921-1923
[7]   COMPLETE SOLUTION OF PERIODIC TODA PROBLEM [J].
KAC, M ;
VANMOERBEKE, P .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1975, 72 (08) :2879-2880
[8]   SOME PERIODIC TODA LATTICES [J].
KAC, M ;
VANMOERBEKE, P .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1975, 72 (04) :1627-1629
[9]   3 INTEGRABLE HAMILTONIAN SYSTEMS CONNECTED WITH ISOSPECTRAL DEFORMATIONS [J].
MOSER, J .
ADVANCES IN MATHEMATICS, 1975, 16 (02) :197-220
[10]   VIBRATION OF A CHAIN WITH NONLINEAR INTERACTION [J].
TODA, M .
JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 1967, 22 (02) :431-&