Protein Significance Analysis in Selected Reaction Monitoring (SRM) Measurements

被引:108
作者
Chang, Ching-Yun [1 ]
Picotti, Paola [2 ]
Huettenhain, Ruth [2 ,6 ]
Heinzelmann-Schwarz, Viola [3 ,4 ]
Jovanovic, Marko [5 ]
Aebersold, Ruedi [2 ,6 ,7 ]
Vitek, Olga [1 ,8 ]
机构
[1] Purdue Univ, Dept Stat, W Lafayette, IN 47907 USA
[2] Swiss Fed Inst Technol, Inst Mol Syst, Dept Biol, Zurich, Switzerland
[3] Univ Zurich Hosp, Translat Res Grp, Zurich, Switzerland
[4] Univ New S Wales, Prince Wales Clin Sch, Fac Med, Sydney, NSW 2052, Australia
[5] Univ Zurich, Inst Mol Life Sci, CH-8006 Zurich, Switzerland
[6] ETH, Competence Ctr Syst Physiol & Metab Dis, Zurich, Switzerland
[7] Univ Zurich, Fac Sci, CH-8006 Zurich, Switzerland
[8] Purdue Univ, Dept Comp Sci, W Lafayette, IN 47907 USA
基金
瑞士国家科学基金会; 欧洲研究理事会;
关键词
QUANTITATIVE PROTEOMICS; MASS-SPECTROMETRY; QUANTIFICATION; TRANSITIONS; DISCOVERY; DESIGN; PLASMA; SCALE;
D O I
10.1074/mcp.M111.014662
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Selected reaction monitoring (SRM) is a targeted mass spectrometry technique that provides sensitive and accurate protein detection and quantification in complex biological mixtures. Statistical and computational tools are essential for the design and analysis of SRM experiments, particularly in studies with large sample throughput. Currently, most such tools focus on the selection of optimized transitions and on processing signals from SRM assays. Little attention is devoted to protein significance analysis, which combines the quantitative measurements for a protein across isotopic labels, peptides, charge states, transitions, samples, and conditions, and detects proteins that change in abundance between conditions while controlling the false discovery rate. We propose a statistical modeling framework for protein significance analysis. It is based on linear mixed-effects models and is applicable to most experimental designs for both isotope label-based and label-free SRM workflows. We illustrate the utility of the framework in two studies: one with a group comparison experimental design and the other with a time course experimental design. We further verify the accuracy of the framework in two controlled data sets, one from the NCI-CPTAC reproducibility investigation and the other from an in-house spike-in study. The proposed framework is sensitive and specific, produces accurate results in broad experimental circumstances, and helps to optimally design future SRM experiments. The statistical framework is implemented in an open-source R-based software package SRMstats, and can be used by researchers with a limited statistics background as a standalone tool or in integration with the existing computational pipelines. Molecular & Cellular Proteomics 11: 10.1074/mcp.M111.014662, 1-12, 2012.
引用
收藏
页数:12
相关论文
共 31 条
[1]   Automated Detection of Inaccurate and Imprecise Transitions in Peptide Quantification by Multiple Reaction Monitoring Mass Spectrometry [J].
Abbatiello, Susan E. ;
Mani, D. R. ;
Keshishian, Hasmik ;
Carr, Steven A. .
CLINICAL CHEMISTRY, 2010, 56 (02) :291-305
[2]   Multi-site assessment of the precision and reproducibility of multiple reaction monitoring-based measurements of proteins in plasma [J].
Addona, Terri A. ;
Abbatiello, Susan E. ;
Schilling, Birgit ;
Skates, Steven J. ;
Mani, D. R. ;
Bunk, David M. ;
Spiegelman, Clifford H. ;
Zimmerman, Lisa J. ;
Ham, Amy-Joan L. ;
Keshishian, Hasmik ;
Hall, Steven C. ;
Allen, Simon ;
Blackman, Ronald K. ;
Borchers, Christoph H. ;
Buck, Charles ;
Cardasis, Helene L. ;
Cusack, Michael P. ;
Dodder, Nathan G. ;
Gibson, Bradford W. ;
Held, Jason M. ;
Hiltke, Tara ;
Jackson, Angela ;
Johansen, Eric B. ;
Kinsinger, Christopher R. ;
Li, Jing ;
Mesri, Mehdi ;
Neubert, Thomas A. ;
Niles, Richard K. ;
Pulsipher, Trenton C. ;
Ransohoff, David ;
Rodriguez, Henry ;
Rudnick, Paul A. ;
Smith, Derek ;
Tabb, David L. ;
Tegeler, Tony J. ;
Variyath, Asokan M. ;
Vega-Montoto, Lorenzo J. ;
Wahlander, Asa ;
Waldemarson, Sofia ;
Wang, Mu ;
Whiteaker, Jeffrey R. ;
Zhao, Lei ;
Anderson, N. Leigh ;
Fisher, Susan J. ;
Liebler, Daniel C. ;
Paulovich, Amanda G. ;
Regnier, Fred E. ;
Tempst, Paul ;
Carr, Steven A. .
NATURE BIOTECHNOLOGY, 2009, 27 (07) :633-U85
[3]   Generating and navigating proteome maps using mass spectrometry [J].
Ahrens, Christian H. ;
Brunner, Erich ;
Qeli, Ermir ;
Basler, Konrad ;
Aebersold, Ruedi .
NATURE REVIEWS MOLECULAR CELL BIOLOGY, 2010, 11 (11) :789-801
[4]  
[Anonymous], 2010, R LANG ENV STAT COMP
[5]  
[Anonymous], 1977, DATA ANAL REGRESSION
[6]   CONTROLLING THE FALSE DISCOVERY RATE - A PRACTICAL AND POWERFUL APPROACH TO MULTIPLE TESTING [J].
BENJAMINI, Y ;
HOCHBERG, Y .
JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 1995, 57 (01) :289-300
[7]   ATAQS: A computational software tool for high throughput transition optimization and validation for selected reaction monitoring mass spectrometry [J].
Brusniak, Mi-Youn K. ;
Kwok, Sung-Tat ;
Christiansen, Mark ;
Campbell, David ;
Reiter, Lukas ;
Picotti, Paola ;
Kusebauch, Ulrike ;
Ramos, Hector ;
Deutsch, Eric W. ;
Chen, Jingchun ;
Moritz, Robert L. ;
Aebersold, Ruedi .
BMC BIOINFORMATICS, 2011, 12
[8]   Free computational resources for designing selected reaction monitoring transitions [J].
Cham, Jennifer A. ;
Bianco, Luca ;
Bessant, Conrad .
PROTEOMICS, 2010, 10 (06) :1106-1126
[9]   Cancer genetics-guided discovery of serum biomarker signatures for diagnosis and prognosis of prostate cancer [J].
Cima, Igor ;
Schiess, Ralph ;
Wild, Peter ;
Kaelin, Martin ;
Schueffler, Peter ;
Lange, Vinzenz ;
Picotti, Paola ;
Ossola, Reto ;
Templeton, Arnoud ;
Schubert, Olga ;
Fuchs, Thomas ;
Leippold, Thomas ;
Wyler, Stephen ;
Zehetner, Jens ;
Jochum, Wolfram ;
Buhmann, Joachim ;
Cerny, Thomas ;
Moch, Holger ;
Gillessen, Silke ;
Aebersold, Ruedi ;
Krek, Wilhelm .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2011, 108 (08) :3342-3347
[10]   Protein Quantification in Label-Free LC-MS Experiments [J].
Clough, Timothy ;
Key, Melissa ;
Ott, Ilka ;
Ragg, Susanne ;
Schadow, Gunther ;
Vitek, Olga .
JOURNAL OF PROTEOME RESEARCH, 2009, 8 (11) :5275-5284