Local discriminative distance metrics ensemble learning

被引:60
作者
Mu, Yang [1 ]
Ding, Wei [1 ]
Tao, Dacheng [2 ,3 ]
机构
[1] Univ Massachusetts, Boston, MA 02125 USA
[2] Univ Technol Sydney, Ctr Quantum Computat & Intelligent Syst, Sydney, NSW 2007, Australia
[3] Univ Technol Sydney, Fac Engn & Informat Technol, Sydney, NSW 2007, Australia
基金
美国国家航空航天局;
关键词
Local learning; Distance metrics learning; SUBSPACE; MARGIN;
D O I
10.1016/j.patcog.2013.01.010
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The ultimate goal of distance metric learning is to incorporate abundant discriminative information to keep all data samples in the same class close and those from different classes separated. Local distance metric methods can preserve discriminative information by considering the neighborhood influence. In this paper, we propose a new local discriminative distance metrics (LDDM) algorithm to learn multiple distance metrics from each training sample (a focal sample) and in the vicinity of that focal sample (focal vicinity), to optimize local compactness and local separability. Those locally learned distance metrics are used to build local classifiers which are aligned in a probabilistic framework via ensemble learning. Theoretical analysis proves the convergence rate bound, the generalization bound of the local distance metrics and the final ensemble classifier. We extensively evaluate LDDM using synthetic datasets and large benchmark UCI datasets. Published by Elsevier Ltd.
引用
收藏
页码:2337 / 2349
页数:13
相关论文
共 38 条
[1]   A survey of the state of the art in learning the kernels [J].
Abbasnejad, M. Ehsan ;
Ramachandram, Dhanesh ;
Mandava, Rajeswari .
KNOWLEDGE AND INFORMATION SYSTEMS, 2012, 31 (02) :193-221
[2]  
[Anonymous], P IJCAI
[3]  
[Anonymous], 2006, Michigan State Univ.
[4]  
[Anonymous], 2006, Proceedings of the 21st National Conference on Aartifical Intelligence
[5]   Eigenfaces vs. Fisherfaces: Recognition using class specific linear projection [J].
Belhumeur, PN ;
Hespanha, JP ;
Kriegman, DJ .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 1997, 19 (07) :711-720
[6]   LOCAL LEARNING ALGORITHMS [J].
BOTTOU, L ;
VAPNIK, V .
NEURAL COMPUTATION, 1992, 4 (06) :888-900
[7]  
Breiman L., 2001, Learn, V45, P5
[8]   A boosting approach for supervised Mahalanobis distance metric learning [J].
Chang, Chin-Chun .
PATTERN RECOGNITION, 2012, 45 (02) :844-862
[9]   Generalized iterative RELIEF for supervised distance metric learning [J].
Chang, Chin-Chun .
PATTERN RECOGNITION, 2010, 43 (08) :2971-2981
[10]   Locally adaptive metric nearest-neighbor classification [J].
Domeniconi, C ;
Peng, J ;
Gunopulos, D .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2002, 24 (09) :1281-1285