Outliers in statistical pattern recognition and an application to automatic chromosome classification

被引:117
作者
Ritter, G
Gallegos, MT
机构
[1] Fak. für Math. und Informatik, Universität Passau
关键词
outlier estimation; mixture distributions; trimming method; Bayesian classification; statistical pattern recognition; automatic chromosome classification; karyotyping; diagnostic classification; biomedical data model;
D O I
10.1016/S0167-8655(97)00049-4
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We propose a heuristic method of parameter estimation in mixture models for data with outliers and design a Bayesian classifier for assignment of m objects to n greater than or equal to m classes under constraints. This method of outlier handling combined with the classifier is applied to the well-known problem of automatic, constrained classification of chromosomes into their biological classes. We show that it decreases the error rate relative to the classical, normal, model by more than 50%. When applied to the Edinburgh feature data of the large Copenhagen image data set Cpr our best classifier yields an error rate close to 1.3% relative to chromosomes; 4 out of 5 cells are correctly classified. (C) 1997 Elsevier Science B.V.
引用
收藏
页码:525 / 539
页数:15
相关论文
共 30 条