Fabrication of complex structures of Holey Fibers in chalcogenide glass

被引:145
作者
Brilland, L
Smektala, F
Renversez, G
Chartier, T
Troles, J
Nguyen, TN
Traynor, N
Monteville, A
机构
[1] PERFOS, F-22300 Lannion, France
[2] Univ Rennes 1, Lab Verres & Ceram, UMR 6512, CNRS, Rennes, France
[3] Univ Paul Cezanne Aix Marseille 3, Inst Fresnel, UMR 6133, CNRS, Marseille, France
[4] Univ Rennes, Lab Optron ENSSAT, UMR 6082, CNRS,FOTON, Lannion, France
关键词
D O I
10.1364/OE.14.001280
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We report recent progress on fabrication of solid core microstructured fibers in chalcogenide glass. Several complex and regular holey fibers from Ga5Ge20Sb10S65 chalcogenide glass have been realized. We demonstrate that the "Stack & Draw" procedure is a powerful tool against crystallisation when used with a very stable chalcogenide glass. For a 3 ring multimode Holey Fiber, we measure the mode field diameter of the fundamental mode and compare it successfully with calculations using the multipole method. We also investigate, via numerical simulations, the behaviour of fundamental mode guiding losses of microstructured fibers as a function of the matrix refractive index, and quantify the advantage obtained by using a high refractive index glass such as chalcogenide instead of low index glass. (c) 2006 Optical Society of America.
引用
收藏
页码:1280 / 1285
页数:6
相关论文
共 17 条
[1]   Endlessly single-mode photonic crystal fiber [J].
Birks, TA ;
Knight, JC ;
Russell, PS .
OPTICS LETTERS, 1997, 22 (13) :961-963
[2]   FULL 2-D PHOTONIC BANDGAPS IN SILICA/AIR STRUCTURES [J].
BIRKS, TA ;
ROBERTS, PJ ;
RUSSEL, PSJ ;
ATKIN, DM ;
SHEPHERD, TJ .
ELECTRONICS LETTERS, 1995, 31 (22) :1941-1943
[3]  
BORDAS F, 2004, JOURN NAT OPT GUID S, P230
[4]   Chalcogenide glasses doped with Tb, Dy and Pr ions [J].
Churbanov, MF ;
Scripachev, IV ;
Shiryaev, VS ;
Plotnichenko, VG ;
Smetanin, SV ;
Kryukova, EB ;
Pyrkov, YN ;
Galagan, BI .
JOURNAL OF NON-CRYSTALLINE SOLIDS, 2003, 326 :301-305
[5]   Optical properties of antimony-stabilised sulphide glasses doped with Dy3+ and Er3+ ions [J].
Guimond, Y ;
Adam, JL ;
Jurdyc, AM ;
Ma, HL ;
Mugnier, J ;
Jacquier, B .
JOURNAL OF NON-CRYSTALLINE SOLIDS, 1999, 256 :378-382
[6]   Multipole method for microstructured optical fibers. II. Implementation and results [J].
Kuhlmey, BT ;
White, TP ;
Renversez, G ;
Maystre, D ;
Botten, LC ;
de Sterke, CM ;
McPhedran, RC .
JOURNAL OF THE OPTICAL SOCIETY OF AMERICA B-OPTICAL PHYSICS, 2002, 19 (10) :2331-2340
[7]   Monitoring of pollutant in waste water by infrared spectroscopy using chalcogenide glass optical fibers [J].
Michel, K ;
Bureau, B ;
Boussard-Plédel, C ;
Jouan, T ;
Adam, JL ;
Staubmann, K ;
Baumann, T .
SENSORS AND ACTUATORS B-CHEMICAL, 2004, 101 (1-2) :252-259
[8]   Holey optical fibres: Fundamental properties and device applications [J].
Monro, TM ;
Richardson, DJ .
COMPTES RENDUS PHYSIQUE, 2003, 4 (01) :175-186
[9]   Chalcogenide holey fibres [J].
Monro, TM ;
West, YD ;
Hewak, DW ;
Broderick, NGR ;
Richardson, DJ .
ELECTRONICS LETTERS, 2000, 36 (24) :1998-2000
[10]   CHALCOGENIDE GLASS-FIBER WITH A CORE CLADDING STRUCTURE [J].
NISHII, J ;
YAMASHITA, T ;
YAMAGISHI, T .
APPLIED OPTICS, 1989, 28 (23) :5122-5127