Dynamics of rumor propagation on small-world networks

被引:454
作者
Zanette, DH [1 ]
机构
[1] Ctr Atom Bariloche, Consejo Nacl Invest Cient & Tecn, RA-8400 San Carlos De Bariloche, Rio Negro, Argentina
[2] Inst Balseiro, RA-8400 San Carlos De Bariloche, Rio Negro, Argentina
来源
PHYSICAL REVIEW E | 2002年 / 65卷 / 04期
关键词
D O I
10.1103/PhysRevE.65.041908
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We study the dynamics of an epidemiclike model for the spread of a rumor on a small-world network. It has been shown that this model exhibits a transition between regimes of localization and propagation at a finite value of the network randomness. Here, by numerical means, we perform a quantitative characterization of the evolution in the two regimes. The variant of dynamic small worlds, where the quenched disorder of small-world networks is replaced by randomly changing connections between individuals, is also analyzed in detail and compared with a mean-field approximation.
引用
收藏
页码:9 / 041908
页数:9
相关论文
共 21 条
[1]   Emergence of scaling in random networks [J].
Barabási, AL ;
Albert, R .
SCIENCE, 1999, 286 (5439) :509-512
[2]   On the properties of small-world network models [J].
Barrat, A ;
Weigt, M .
EUROPEAN PHYSICAL JOURNAL B, 2000, 13 (03) :547-560
[3]   Small-world networks:: Evidence for a crossover picture [J].
Barthélémy, M ;
Amaral, LAN .
PHYSICAL REVIEW LETTERS, 1999, 82 (15) :3180-3183
[4]   First-order transition in small-world networks [J].
De Menezes, MA ;
Moukarzel, CF ;
Penna, TJP .
EUROPHYSICS LETTERS, 2000, 50 (05) :574-579
[5]   RANDOM NETWORKS OF AUTOMATA - A SIMPLE ANNEALED APPROXIMATION [J].
DERRIDA, B ;
POMEAU, Y .
EUROPHYSICS LETTERS, 1986, 1 (02) :45-49
[6]  
Frauenthal J.C., 1980, MATH MODELLING EPIDE
[7]   Small world effect in an epidemiological model [J].
Kuperman, M ;
Abramson, G .
PHYSICAL REVIEW LETTERS, 2001, 86 (13) :2909-2912
[8]   Small-world behaviour in a system of mobile elements [J].
Manrubia, SC ;
Delgado, J ;
Luque, B .
EUROPHYSICS LETTERS, 2001, 53 (05) :693-699
[9]  
MONTROLL E, 1979, FLUCTUATION PHENOMEN
[10]   Epidemics and percolation in small-world networks [J].
Moore, C ;
Newman, MEJ .
PHYSICAL REVIEW E, 2000, 61 (05) :5678-5682