Modeling, validation and analysis of mechanical stress generation and dimension changes of a pouch type high power Li-ion battery

被引:126
作者
Fu, Rujian [1 ]
Xiao, Meng [1 ]
Choe, Song-Yul [1 ]
机构
[1] Auburn Univ, Auburn, AL 36830 USA
关键词
Li ion polymer battery; Electrochemical; Thermal and mechanical model; Stress modeling; Volume change; INTERCALATION-INDUCED STRESS; DIFFUSION-INDUCED STRESS; ELECTRODE PARTICLES; MATHEMATICAL-MODEL; POROUS-ELECTRODES; INSERTION CELL; LITHIUM; SIMULATION; DISCHARGE; FRACTURE;
D O I
10.1016/j.jpowsour.2012.09.096
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Mechanical stress is generated in electrode particles of a Lithium ion Polymer Battery (LiPB) during charge and discharge. The stress can cause cracks and fractures in the solid particles over time when cells are cycled, which leads to a disorder and a fracture of the electrodes. In order to understand the mechanism, a stress model for a pouch type high power LiPB is developed based on electrochemical and thermal model, where the stress induced by the ion concentration in the electrode particles is considered. The stress in the particles causes changes in the electrode volumes and leads to changes in the thickness of a battery cell, which is measured using a device designed with two linear voltage displacement transducers (LVDT). This model is validated against experimental data obtained from a pouch cell. Analysis shows that the magnitude of stress depends upon locations and C rate, while the thickness of a single cell is mainly affected by the state of charge (SOC), but not C rate. (c) 2012 Elsevier B.V. All rights reserved.
引用
收藏
页码:211 / 224
页数:14
相关论文
共 27 条
[1]   A finite strain model of stress, diffusion, plastic flow, and electrochemical reactions in a lithium-ion half-cell [J].
Bower, A. F. ;
Guduru, P. R. ;
Sethuraman, V. A. .
JOURNAL OF THE MECHANICS AND PHYSICS OF SOLIDS, 2011, 59 (04) :804-828
[2]   HEAT-TRANSFER PHENOMENA IN LITHIUM POLYMER-ELECTROLYTE BATTERIES FOR ELECTRIC VEHICLE APPLICATION [J].
CHEN, Y ;
EVANS, JW .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1993, 140 (07) :1833-1838
[3]   A mathematical model of stress generation and fracture in lithium manganese oxide [J].
Christensen, J ;
Newman, J .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2006, 153 (06) :A1019-A1030
[4]   Stress generation and fracture in lithium insertion materials [J].
Christensen, J ;
Newman, J .
JOURNAL OF SOLID STATE ELECTROCHEMISTRY, 2006, 10 (05) :293-319
[5]   Modeling Diffusion-Induced Stress in Li-Ion Cells with Porous Electrodes [J].
Christensen, Jake .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2010, 157 (03) :A366-A380
[6]   MODELING OF GALVANOSTATIC CHARGE AND DISCHARGE OF THE LITHIUM POLYMER INSERTION CELL [J].
DOYLE, M ;
FULLER, TF ;
NEWMAN, J .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1993, 140 (06) :1526-1533
[7]   THE IMPORTANCE OF THE LITHIUM ION TRANSFERENCE NUMBER IN LITHIUM POLYMER CELLS [J].
DOYLE, M ;
FULLER, TF ;
NEWMAN, J .
ELECTROCHIMICA ACTA, 1994, 39 (13) :2073-2081
[8]   SIMULATION AND OPTIMIZATION OF THE DUAL LITHIUM ION INSERTION CELL [J].
FULLER, TF ;
DOYLE, M ;
NEWMAN, J .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1994, 141 (01) :1-10
[9]   Microstructural modeling and design of rechargeable lithium-ion batteries [J].
García, RE ;
Chiang, YM ;
Carter, WC ;
Limthongkul, P ;
Bishop, CM .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2005, 152 (01) :A255-A263
[10]   Numerical modeling of electrochemical-mechanical interactions in lithium polymer batteries [J].
Golmon, Stephanie ;
Maute, Kurt ;
Dunn, Martin L. .
COMPUTERS & STRUCTURES, 2009, 87 (23-24) :1567-1579