Poly(ε-caprolactone)-functionalized carbon nanotubes and their biodegradation properties

被引:175
作者
Zeng, HL [1 ]
Gao, C [1 ]
Yan, DY [1 ]
机构
[1] Shanghai Jiao Tong Univ, Coll Chem & Chem Engn, Shanghai 200240, Peoples R China
关键词
D O I
10.1002/adfm.200500607
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Biodegradable poly(epsilon-caprolactone) (PCL) has been covalently grafted onto the surfaces of multiwalled carbon nanotubes (MWNTs) by the "grafting from" approach based on in-situ ring-opening polymerization of epsilon-caprolactone. The grafted PCL content can be controlled easily by adjusting the feed ratio of monomer to MWNT-supported macroinitiators (MWNT-OH). The resulting products have been characterized with Fourier-transform IR (FTIR), NMR, and Raman spectroscopies, transmission electron microscopy (TEM), and scanning electron microscopy (SEM). After PCL was coated onto MWNT surfaces, core/shell structures with nanotubes as the "hard" core and the hairy polymer layer as the "soft" shell are formed, especially for MWNTs coated with a high density of polymer chains. Such a polymer shell promises good solubility/dispersibility of the MWNT-PCL nanohybrids in low-boiling-point organic solvents such as chloroform and tetrahydrofuran. Biodegradation experiments have shown that the PCL grafted onto MWNTs can be completely enzymatically degraded within 4 days in a phosphate buffer solution in the presence of pseudomonas (PS) lipase, and the carbon nanotubes retain their tubelike morphologies, as observed by SEM and TEM. The results present possible applications for these biocompatible PCL-functionalized CNTs in bionanomaterials, biomedicine, and artificial bones.
引用
收藏
页码:812 / 818
页数:7
相关论文
共 31 条
[1]   Rational chemical strategies for carbon nanotube functionalization [J].
Banerjee, S ;
Kahn, MGC ;
Wong, SS .
CHEMISTRY-A EUROPEAN JOURNAL, 2003, 9 (09) :1899-1908
[2]   Polymer-grafted multiwalled carbon nanotubes through surface-initiated polymerization [J].
Baskaran, D ;
Mays, JW ;
Bratcher, MS .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2004, 43 (16) :2138-2142
[3]   Solution properties of single-walled carbon nanotubes [J].
Chen, J ;
Hamon, MA ;
Hu, H ;
Chen, YS ;
Rao, AM ;
Eklund, PC ;
Haddon, RC .
SCIENCE, 1998, 282 (5386) :95-98
[4]   Carbon nanotubes: Synthesis, integration, and properties [J].
Dai, HJ .
ACCOUNTS OF CHEMICAL RESEARCH, 2002, 35 (12) :1035-1044
[5]  
Dai LM, 2001, ADV MATER, V13, P899, DOI 10.1002/1521-4095(200107)13:12/13<899::AID-ADMA899>3.0.CO
[6]  
2-G
[7]   Super-tough carbon-nanotube fibres -: These extraordinary composite fibres can be woven into electronic textiles. [J].
Dalton, AB ;
Collins, S ;
Muñoz, E ;
Razal, JM ;
Ebron, VH ;
Ferraris, JP ;
Coleman, JN ;
Kim, BG ;
Baughman, RH .
NATURE, 2003, 423 (6941) :703-703
[8]   Enzymatic degradation of poly(ε-caprolactone)/poly(DL-lactide) blends in phosphate buffer solution [J].
Gan, ZH ;
Yu, DH ;
Zhong, ZY ;
Liang, QZ ;
Jing, XB .
POLYMER, 1999, 40 (10) :2859-2862
[9]   Enzymatic degradation of poly(epsilon-caprolactone) film in phosphate buffer solution containing lipases [J].
Gan, ZH ;
Liang, QZ ;
Zhang, J ;
Jing, XB .
POLYMER DEGRADATION AND STABILITY, 1997, 56 (02) :209-213
[10]   Polyurea-functionalized multiwalled carbon nanotubes: Synthesis, morphology, and Raman spectroscopy [J].
Gao, C ;
Jin, YZ ;
Kong, H ;
Whitby, RLD ;
Acquah, SFA ;
Chen, GY ;
Qian, HH ;
Hartschuh, A ;
Silva, SRP ;
Henley, S ;
Fearon, P ;
Kroto, HW ;
Walton, DRM .
JOURNAL OF PHYSICAL CHEMISTRY B, 2005, 109 (24) :11925-11932