On the redundancy of the fixed-database Lempel-Ziv algorithm for phi-mixing sources

被引:16
作者
Yang, EH [1 ]
Kieffer, JC [1 ]
机构
[1] UNIV MINNESOTA, DEPT ELECT ENGN, MINNEAPOLIS, MN 55455 USA
基金
美国国家科学基金会;
关键词
data compression; fixed-database Lempel-Ziv algorithm; phi-mixing sources; Shannon entropy rate; variable-length to variable-length codes;
D O I
10.1109/18.605570
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The redundancy problem of the fixed-database Lempel-Ziv algorithm is considered. It is demonstrated that for a class of phi-mixing sources which includes Markov sources, unifilar sources, and finite-state sources as special cases, the redundancy of the fixed-database Lempel-Ziv algorithm with database size n is lower-bounded by H(log log n)/log n + O((log log log n)/log n) and upper-bounded by 2H(log log n)/log n + O((log log log n)/log n) where H is the entropy rate of the source. The method of proof is new and uses the concept of variable-length to variable-length codes.
引用
收藏
页码:1101 / 1111
页数:11
相关论文
共 17 条
[1]  
Billingsley P., 2013, CONVERGE PROBAB MEAS
[2]   ASYMPTOTICALLY MEAN STATIONARY MEASURES [J].
GRAY, RM ;
KIEFFER, JC .
ANNALS OF PROBABILITY, 1980, 8 (05) :962-973
[3]   DISCRETE-TIME DETECTION IN PHI-MIXING NOISE [J].
HALVERSON, DR ;
WISE, GL .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1980, 26 (02) :189-198
[4]   VARIABLE-LENGTH-TO-BLOCK CODING [J].
JELINEK, F ;
SCHNEIDER, KS .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1972, 18 (06) :765-+
[5]   THE POINTWISE ERGODIC THEOREM FOR TRANSFORMATIONS WHOSE ORBITS CONTAIN OR ARE CONTAINED IN THE ORBITS OF A MEASURE-PRESERVING TRANSFORMATION [J].
KIEFFER, JC ;
RAHE, M .
CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 1982, 34 (06) :1303-1318
[6]   SAMPLE CONVERSES IN SOURCE-CODING THEORY [J].
KIEFFER, JC .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1991, 37 (02) :263-268
[7]  
KIEFFER JC, 1980, P 18 ALL C COMM CONT, P438
[8]   THE PERFORMANCE OF UNIVERSAL ENCODING [J].
KRICHEVSKY, RE ;
TROFIMOV, VK .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1981, 27 (02) :199-207
[9]   On the average redundancy rate of the Lempel-Ziv code [J].
Louchard, G ;
Szpankowski, W .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1997, 43 (01) :2-8
[10]   A GENERALIZED SUFFIX TREE AND ITS (UN)EXPECTED ASYMPTOTIC BEHAVIORS [J].
SZPANKOWSKI, W .
SIAM JOURNAL ON COMPUTING, 1993, 22 (06) :1176-1198