Aza analogues of nucleic acid bases: experimental determination and computational prediction of the crystal structure of anhydrous 5-azauracil

被引:21
作者
Potter, BS
Palmer, RA
Withnall, R
Chowdhry, BZ
Price, SL
机构
[1] UCL, Dept Chem, Ctr Theoret & Computat Chem, London WC1H 0AJ, England
[2] Univ London Birkbeck Coll, Dept Crystallog, London WC1E 7HX, England
[3] Univ Greenwich, Sch Chem & Life Sci, London SE18 6PF, England
基金
英国工程与自然科学研究理事会;
关键词
5-azauracil anhydrate; X-ray crystallography; structure; crystal structure prediction; lattice energy calculations;
D O I
10.1016/S0022-2860(98)00849-7
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The crystal and molecular structure of 5-azauracil, C(3)H(3)O(2)N(3) M(r) = 1 13.07 Da, was determined from X-ray diffraction data. The material crystallizes in the orthorhombic space group Pbca with eight molecules of 5-azauracil in a cell of dimensions a = 6.5135(3), b = 13,5217(4), c = 6.5824(4) Angstrom, crystal density D(c) = 1.779 g cm(-3). The structure was determined using direct methods and refined by full-matrix least-squares to a conventional R index of 0.0337 for 763 observed reflections and 86 parameters. Two strong hydrogen bonds, N1H1...O4 and N3H3...N5, and several weaker intermolecular interactions produce a crinkled sheet structure. This crystal structure was independently predicted by a search for minima in the lattice energy, as calculated using an ab initio optimised molecular structure and a distributed multipole model for the electrostatic interactions. Indeed, the global minimum in the search corresponded to the same Pbca space group, with rms errors in the cell lengths of 3.7%. There is a larger energy gap separating the observed hydrogen bonding motif structure from alternative structures, with different hydrogen bonds and connectivity, for 5-azauracil than for 6-azauracil and uracil. (C) 1999 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:349 / 361
页数:13
相关论文
共 52 条
[1]   TABLES OF BOND LENGTHS DETERMINED BY X-RAY AND NEUTRON-DIFFRACTION .1. BOND LENGTHS IN ORGANIC-COMPOUNDS [J].
ALLEN, FH ;
KENNARD, O ;
WATSON, DG ;
BRAMMER, L ;
ORPEN, AG ;
TAYLOR, R .
JOURNAL OF THE CHEMICAL SOCIETY-PERKIN TRANSACTIONS 2, 1987, (12) :S1-S19
[2]  
AMOS RD, 1992, CADPAC5 CAMBRIDGE AN
[3]   ANALOGS OF NUCLEOSIDES .40. INHIBITION OF NUCLEIC-ACID SYNTHESIS IN L1210 CELLS BY NUCLEOSIDE ANALOGS [J].
BERANEK, J ;
ACTON, EM .
COLLECTION OF CZECHOSLOVAK CHEMICAL COMMUNICATIONS, 1984, 49 (11) :2551-2556
[4]  
BLAGDEN N, 1998, COMMUNICATION
[5]   ELECTROSTATIC PREDICTIONS OF SHAPES AND PROPERTIES OF VANDERWAALS MOLECULES [J].
BUCKINGHAM, AD ;
FOWLER, PW ;
STONE, AJ .
INTERNATIONAL REVIEWS IN PHYSICAL CHEMISTRY, 1986, 5 (2-3) :107-114
[6]   Predicting the crystal structure of organic molecular materials [J].
Chaka, AM ;
Zaniewski, R ;
Youngs, W ;
Tessier, C ;
Klopman, G .
ACTA CRYSTALLOGRAPHICA SECTION B-STRUCTURAL SCIENCE, 1996, 52 :165-183
[7]   Role of electrostatic interactions in determining the crystal structures of polar organic molecules. A distributed multipole study [J].
Coombes, DS ;
Price, SL ;
Willock, DJ ;
Leslie, M .
JOURNAL OF PHYSICAL CHEMISTRY, 1996, 100 (18) :7352-7360
[8]   NONBONDED POTENTIAL FUNCTION MODELS FOR CRYSTALLINE OXOHYDROCARBONS [J].
COX, SR ;
HSU, LY ;
WILLIAMS, DE .
ACTA CRYSTALLOGRAPHICA SECTION A, 1981, 37 (MAY) :293-301
[9]   REPRESENTATION OF THE MOLECULAR ELECTROSTATIC POTENTIAL BY A NET ATOMIC CHARGE MODEL [J].
COX, SR ;
WILLIAMS, DE .
JOURNAL OF COMPUTATIONAL CHEMISTRY, 1981, 2 (03) :304-323
[10]   HYDROGEN-BONDING EFFECTS ON MOLECULAR-STRUCTURE CRYSTALLOGRAPHIC STUDIES OF BARBITURATES [J].
CRAVEN, BM ;
CUSATIS, C ;
GARTLAND, GL ;
VIZZINI, EA .
JOURNAL OF MOLECULAR STRUCTURE, 1973, 16 (02) :331-342