Regulatory genes controlling cell fate choice in embryonic and adult neural stem cells

被引:35
作者
Gangemi, RMR
Perera, M
Corte, G
机构
[1] Ist Nazl Ric Canc, Lab Gene Transfer, I-16132 Genoa, Italy
[2] Univ Genoa, Sch Med, Dept Oncol Biol & Genet, Genoa, Italy
关键词
asymmetric division; cell fate; neurogenesis; neural stem cells; transcription factors;
D O I
10.1046/j.1471-4159.2004.02310.x
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Neural stem cells are the most immature progenitor cells in the nervous system and are defined by their ability to self-renew by symmetric division as well as to give rise to more mature progenitors of all neural lineages by asymmetric division (multipotentiality). The interest in neural stem cells has been growing in the past few years following the demonstration of their presence also in the adult nervous system of several mammals, including humans. This observation implies that the brain, once thought to be entirely post-mitotic, must have at least a limited capacity for self-renewal. This raises the possibility that the adult nervous system may still have the necessary plasticity to undergo repair of inborn defects and acquired injuries, if ways can be found to exploit the potential of neural stem cells (either endogenous or derived from other sources) to replace damaged or defective cells. A full understanding of the molecular mechanisms regulating generation and maintenance of neural stem cells, their choice between different differentiation programmes and their migration properties is essential if these cells are to be used for therapeutic applications. Here, we summarize what is currently known of the genes and the signalling pathways involved in these mechanisms.
引用
收藏
页码:286 / 306
页数:21
相关论文
共 227 条
[1]   Neural stem cells display extensive tropism for pathology in adult brain: Evidence from intracranial gliomas [J].
Aboody, KS ;
Brown, A ;
Rainov, NG ;
Bower, KA ;
Liu, SX ;
Yang, W ;
Small, JE ;
Herrlinger, U ;
Ourednik, V ;
Black, PM ;
Breakefield, XO ;
Snyder, EY .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2000, 97 (23) :12846-12851
[2]   Neurogenesis in adult subventricular zone [J].
Alvarez-Buylla, A ;
García-Verdugo, JM .
JOURNAL OF NEUROSCIENCE, 2002, 22 (03) :629-634
[3]   Stem cells and pattern formation in the nervous system: The possible versus the actual [J].
Anderson, DJ .
NEURON, 2001, 30 (01) :19-35
[4]  
Anderson SA, 2001, DEVELOPMENT, V128, P353
[5]   Mutations of the homeobox genes Dlx-1 and Dlx-2 disrupt the striatal subventricular zone and differentiation of late born striatal neurons [J].
Anderson, SA ;
Qiu, MS ;
Bulfone, A ;
Eisenstat, DD ;
Meneses, J ;
Pedersen, R ;
Rubenstein, JLR .
NEURON, 1997, 19 (01) :27-37
[6]   Notch signaling: Cell fate control and signal integration in development [J].
Artavanis-Tsakonas, S ;
Rand, MD ;
Lake, RJ .
SCIENCE, 1999, 284 (5415) :770-776
[7]   NOTCH SIGNALING [J].
ARTAVANISTSAKONAS, S ;
MATSUNO, K ;
FORTINI, ME .
SCIENCE, 1995, 268 (5208) :225-232
[8]   Zic1 promotes the expansion of dorsal neural progenitors in spinal cord by inhibiting neuronal differentiation [J].
Aruga, J ;
Tohmonda, T ;
Homma, S ;
Mikoshiba, K .
DEVELOPMENTAL BIOLOGY, 2002, 244 (02) :329-341
[9]   Neuronal replacement from endogenous precursors in the adult brain after stroke [J].
Arvidsson, A ;
Collin, T ;
Kirik, D ;
Kokaia, Z ;
Lindvall, O .
NATURE MEDICINE, 2002, 8 (09) :963-970
[10]   Gene therapy of experimental brain tumors using neural progenitor cells [J].
Benedetti, S ;
Pirola, B ;
Pollo, B ;
Magrassi, L ;
Bruzzone, MG ;
Rigamonti, D ;
Galli, R ;
Selleri, S ;
Di Meco, F ;
De Fraja, C ;
Vescovi, A ;
Cattaneo, E ;
Finocchiaro, G .
NATURE MEDICINE, 2000, 6 (04) :447-450