Noisy FitzHugh-Nagumo model:: From single elements to globally coupled networks -: art. no. 026202

被引:65
作者
Acebrón, JA
Bulsara, AR
Rappel, WJ
机构
[1] Univ Calif San Diego, Dept Phys, La Jolla, CA 92093 USA
[2] SPAWAR Syst Ctr Code D363, San Diego, CA 92152 USA
来源
PHYSICAL REVIEW E | 2004年 / 69卷 / 02期
关键词
D O I
10.1103/PhysRevE.69.026202
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We study the noisy FitzHugh-Nagumo model, representative of the dynamics of excitable neural elements, and derive a Fokker-Planck equation for both a single element and for a network of globally coupled elements. We introduce an efficient way to numerically solve this Fokker-Planck equation, especially for large noise levels. We show that, contrary to the single element, the network can undergo a Hopf bifurcation as the coupling strength is increased. Furthermore, we show that an external sinusoidal driving force leads to a classical resonance when its frequency matches the underlying system frequency. This resonance is also investigated analytically by exploiting the different time scales in the problem.
引用
收藏
页码:026202 / 1
页数:9
相关论文
共 46 条
[1]  
ACEBRON J, IN PRESS FLUCT NOISE
[2]   Cooperative dynamics in a class of coupled two-dimensional oscillators -: art. no. 016210 [J].
Acebrón, JA ;
Rappel, WJ ;
Bulsara, AR .
PHYSICAL REVIEW E, 2003, 67 (01) :17
[3]   Noise-mediated dynamics in a two-dimensional oscillator:: Exact solutions and numerical results [J].
Acebrón, JA ;
Bulsara, AR ;
Inchiosa, ME ;
Rappel, WJ .
EUROPHYSICS LETTERS, 2001, 56 (03) :354-360
[4]   Statistical mechanics of complex networks [J].
Albert, R ;
Barabási, AL .
REVIEWS OF MODERN PHYSICS, 2002, 74 (01) :47-97
[5]  
Arnold L., 1999, RANDOM DYNAMICAL SYS
[6]   Tuning in to noise [J].
Bulsara, AR ;
Gammaitoni, L .
PHYSICS TODAY, 1996, 49 (03) :39-45
[7]   Noise-enhanced capacity via stochastic resonance in an asymmetric binary channel [J].
ChapeauBlondeau, F .
PHYSICAL REVIEW E, 1997, 55 (02) :2016-2019
[8]   STATISTICAL-MECHANICS OF A NON-LINEAR STOCHASTIC-MODEL [J].
DESAI, RC ;
ZWANZIG, R .
JOURNAL OF STATISTICAL PHYSICS, 1978, 19 (01) :1-24
[9]   IMPULSES AND PHYSIOLOGICAL STATES IN THEORETICAL MODELS OF NERVE MEMBRANE [J].
FITZHUGH, R .
BIOPHYSICAL JOURNAL, 1961, 1 (06) :445-&
[10]   Stochastic resonance [J].
Gammaitoni, L ;
Hanggi, P ;
Jung, P ;
Marchesoni, F .
REVIEWS OF MODERN PHYSICS, 1998, 70 (01) :223-287