Genetic variation of a disintegrin gene found in the American copperhead snake (Agkistrodon contortrix)

被引:11
作者
Soto, Julio G.
Powell, Randy L.
Reyes, Steven R.
Wolana, Luwam
Swanson, Laura J.
Sanchez, Elda E.
Perez, John C.
机构
[1] San Jose State Univ, Dept Biol Sci, San Jose, CA 95192 USA
[2] Texas A&M Univ, Nat Toxins Res Ctr, Kingsville, TX 78363 USA
[3] Southwestern Community Coll, Biotechnol Program, Chula Vista, CA USA
关键词
snake venom; phylogenetic analysis; intraspecific variation; geographic variation;
D O I
10.1016/j.gene.2005.11.039
中图分类号
Q3 [遗传学];
学科分类号
071007 ; 090102 ;
摘要
Disintegrins are small, non-enzymatic proteins produced in snake venom. PCR and DNA sequencing analysis of genomic DNA for all subspecies of the copperhead snake (Agkistrodon contortrix) were analyzed for the presence of a disintegrin gene. Four samples each of the subspecies: A. e. contortrix, A. c. latichictus, A. c. mokasen, A. c. phaeogaster, and A. c. pictigaster were collected from different locations across their geographic range and analyzed. A single PCR fragment from each sample was obtained, containing exon and intron sequences. The disintegrins identified in this study shared the highest amino acid identity to contortrostatin and acostatin b chain. Neighbor joining analysis of the disintegrin haplotypes and bootstrap tests of significance grouped the A. contortrix subspecies into two clades. The A. c. mok-asen samples collected in Kentucky were grouped in one clade, while the A. c. contortrix, A. c. laticinctus, A. c. phaeogaster, and A. c. pictigaster samples collected in Texas, Louisiana, and Missouri were grouped in a different clade. Analysis of molecular variance (AMOVA) and Phi(ST) pairwise comparisons showed significant genetic variation between subspecies. Nucleotide substitution analysis suggests the rapid evolution of disintegrin genes in A. contortrix subspecies. (c) 2005 Elsevier B.V. All rights reserved.
引用
收藏
页码:1 / 7
页数:7
相关论文
共 40 条
[1]   Is the venom related to diet and tail color during Bothrops moojeni ontogeny? [J].
Andrade, DV ;
Abe, AS ;
dosSantos, MC .
JOURNAL OF HERPETOLOGY, 1996, 30 (02) :285-288
[2]   Snake venom disintegrins: novel dimeric disintegrins and structural diversification by disulphide bond engineering [J].
Calvete, JJ ;
Moreno-Murciano, MP ;
Theakston, RDG ;
Kisiel, DG ;
Marcinkiewicz, C .
BIOCHEMICAL JOURNAL, 2003, 372 :725-734
[3]  
Campbell JA., 2004, The Venomous Reptiles of the Western Hemisphere, V2
[4]   Molecular cloning and evolution of the genes encoding the precursors of Taiwan cobra cardiotoxin and cardiotoxin-like basic protein [J].
Chang, LS ;
Lin, SK ;
Chung, CL .
BIOCHEMICAL GENETICS, 2004, 42 (11-12) :429-440
[5]   SNAKE-VENOM VARIABILITY - METHODS OF STUDY, RESULTS AND INTERPRETATION [J].
CHIPPAUX, JP ;
WILLIAMS, V ;
WHITE, J .
TOXICON, 1991, 29 (11) :1279-1303
[6]   Regional and accelerated molecular evolution in group I snake venom gland phospholipase A2 isozymes [J].
Chuman, Y ;
Nobuhisa, I ;
Ogawa, T ;
Deshimaru, M ;
Chijiwa, T ;
Tan, NH ;
Fukumaki, Y ;
Shimohigashi, Y ;
Ducancel, F ;
Boulain, JC ;
Ménez, A ;
Ohno, M .
TOXICON, 2000, 38 (03) :449-462
[7]   Diet and snake venom evolution [J].
Daltry, JC ;
Wuster, W ;
Thorpe, RS .
NATURE, 1996, 379 (6565) :537-540
[8]  
DALTRY JC, 1997, VENOMOUS SNAKES ECOL, V70, P155
[9]   Accelerated evolution of crotalinae snake venom gland serine proteases [J].
Deshimaru, M ;
Ogawa, T ;
Nakashima, KI ;
Nobuhisa, I ;
Chijiwa, T ;
Shimohigashi, Y ;
Fukumaki, Y ;
Niwa, M ;
Yamashina, I ;
Hattori, S ;
Ohno, M .
FEBS LETTERS, 1996, 397 (01) :83-88
[10]  
EXCOFFIER L, 1992, GENETICS, V131, P479