Feedback regulation of an Agrobacterium catalase gene katA involved in Agrobacterium-plant interaction

被引:20
作者
Xu, XQ
Li, LP
Pan, SQ
机构
[1] Natl Univ Singapore, Dept Biol Sci, Singapore 117543, Singapore
[2] China Agr Univ, Dept Plant Pathol, Beijing 100094, Peoples R China
关键词
D O I
10.1046/j.1365-2958.2001.02653.x
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Catalases are known to detoxify H2O2, a major component of oxidative stress imposed on a cell. An Agrobacterium tumefaciens catalase encoded by a chromosomal gene katA has been implicated as an important virulence factor as it is involved in detoxification of H2O2 released during Agrobacterium-plant interaction. In this paper, we report a feedback regulation pathway that controls the expression of katA in A. tumefaciens cells. We observed that katA could be induced by plant tissue sections and by acidic pH on a minimal medium, which resembles the plant environment that the bacteria encounter during the course of infection. This represents a new regulatory factor for catalase induction in bacteria. More importantly, a feedback regulation was observed when the katA-gfp expression was studied in different genetic backgrounds. We found that introduction of a wild-type katA gene encoding a functional catalase into A. tumefaciens cells could repress the katA-gfp expression over 60-fold. The katA gene could be induced by H2O2 and the encoded catalase could detoxify H2O2. In addition, the katA-gfp expression of one bacterial cell could be repressed by other surrounding catalase-proficient bacterial cells. Furthermore, mutation at katA caused a 10-fold increase of the intracellular H2O2 concentration in the bacteria grown on an acidic pH medium. These results suggest that the endogenous H2O2 generated during A. tumefaciens cell growth could serve as the intracellular and intercellular inducer for the katA gene expression and that the acidic pH could pose an oxidative stress on the bacteria. Surprisingly, one mutated KatA protein, exhibiting no significant catalase activity as a result of the alteration of two important residues at the putative active site, could partially repress the katA-gfp expression. The feedback regulation of the katA gene by both catalase activity and KatA protein could presumably maintain an appropriated level of catalase activity and H2O2 inside A. tumefaciens cells.
引用
收藏
页码:645 / 657
页数:13
相关论文
共 67 条
[1]  
ANSLEY JC, 1995, MICROBIOLOGY, V141, P843
[2]   Regulation of the OxyR transcription factor by hydrogen peroxide and the cellular thiol -: disulfide status [J].
Åslund, F ;
Zheng, M ;
Beckwith, J ;
Storz, G .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1999, 96 (11) :6161-6165
[3]   The katX gene, which codes for the catalase in spores of Bacillus subtilis, is a forespore-specific gene controlled by σF, and KatX is essential for hydrogen peroxide resistance of the germinating spore [J].
Bagyan, I ;
Casillas-Martinez, L ;
Setlow, P .
JOURNAL OF BACTERIOLOGY, 1998, 180 (08) :2057-2062
[4]   ACTIVE OXYGEN IN PLANT PATHOGENESIS [J].
BAKER, CJ ;
ORLANDI, EW .
ANNUAL REVIEW OF PHYTOPATHOLOGY, 1995, 33 :299-321
[5]   A PEROXIDE ASCORBATE-INDUCIBLE CATALASE FROM HAEMOPHILUS-INFLUENZAE IS HOMOLOGOUS TO THE ESCHERICHIA-COLI KATE GENE-PRODUCT [J].
BISHAI, WR ;
SMITH, HO ;
BARCAK, GJ .
JOURNAL OF BACTERIOLOGY, 1994, 176 (10) :2914-2921
[6]  
Bravo J., 1997, OXIDATIVE STRESS MOL, P407
[7]   Bacillus subtilis contains multiple Fur homologues:: identification of the iron uptake (Fur) and peroxide regulon (PerR) repressors [J].
Bsat, N ;
Herbig, A ;
Casillas-Martinez, L ;
Setlow, P ;
Helmann, JD .
MOLECULAR MICROBIOLOGY, 1998, 29 (01) :189-198
[8]  
CANGELOSI GA, 1991, METHOD ENZYMOL, V204, P384
[9]   CONSTRUCTION OF AGROBACTERIUM STRAINS BY ELECTROPORATION OF GENOMIC DNA AND ITS UTILITY IN ANALYSIS OF CHROMOSOMAL VIRULENCE MUTATIONS [J].
CHARLES, TC ;
DOTY, SL ;
NESTER, EW .
APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 1994, 60 (11) :4192-4194
[10]   CONTROLLED EXPRESSION OF THE TRANSCRIPTIONAL ACTIVATOR GENE VIRG IN AGROBACTERIUM-TUMEFACIENS BY USING THE ESCHERICHIA-COLI LAC PROMOTER [J].
CHEN, CY ;
WINANS, SC .
JOURNAL OF BACTERIOLOGY, 1991, 173 (03) :1139-1144