Resistance of Escherichia coli and Salmonella against nisin and curvacin A

被引:53
作者
Gänzle, MG [1 ]
Hertel, C [1 ]
Hammes, WP [1 ]
机构
[1] Univ Hohenheim, Inst Lebensmitteltechnol ALT, D-70599 Stuttgart, Germany
关键词
nisin; curvacin A; Escherichia coli O157 : H7; Salmonella; resistance; LPS mutants;
D O I
10.1016/S0168-1605(99)00026-4
中图分类号
TS2 [食品工业];
学科分类号
0832 ;
摘要
We have determined the effects of the following factors on the resistance of Gram-negative bacteria against nisin and curvacin A: (i) chemotype of the lipopolysaccharide (LPS), (ii) addition of agents permeabilizing the outer membrane, (iii) the fatty acid supply of the growth medium, and (iv) the adaptation to acid and salt stress. Bacteriocin activity was determined against growing and resting cells as well as protoplasts. All smooth strains of Escherichia coli and Salmonella enterica serovar Typhimurium were highly resistant towards the bacteriocins, whereas mutants that possess the core of the LPS, but not the O antigen, as well as deep rough LPS mutants were sensitive. Antibiotics with outer membrane permeabilizing activity, polymyxin B and polymyxin B nonapeptide, increased the sensitivity of smooth E. coli towards nisin, but not that of deep rough mutants. Incorporation of 1 g l(-1) of either oleic acid or linoleic acid to the growth media greatly increased the susceptibility of E. coli LTH1600 and LTH4346 towards bacteriocins. Both strains of E. coli were sensitive to nisin and curvacin A at a pH of less than 5.5 and more than 3% (w/v) NaCl. Adaptation to sublethal pH or higher NaCl concentrations (pH 4.54 and 5.35 or 4.5% (w/v) NaCl) provided only limited protection against the bacteriocidal activity of nisin and curvacin A. Adaptation to 4.5% (w/v) NaCl did not result in cross protection to bacteriocin activity at pH 4.4, but rendered the cells more sensitive towards bacteriocins. (C) 1999 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:37 / 50
页数:14
相关论文
共 54 条
[1]   SURVIVAL AND GROWTH OF ESCHERICHIA-COLI O157-H7 IN-GROUND, ROASTED BEEF AS AFFECTED BY PH, ACIDULANTS, AND TEMPERATURE [J].
ABDULRAOUF, UM ;
BEUCHAT, LR ;
AMMAR, MS .
APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 1993, 59 (08) :2364-2368
[2]   SURVIVAL AND GROWTH OF ESCHERICHIA-COLI O157-H7 ON SALAD VEGETABLES [J].
ABDULRAOUF, UM ;
BEUCHAT, LR ;
AMMAR, MS .
APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 1993, 59 (07) :1999-2006
[3]   Acid stress responses in enterobacteria [J].
Bearson, S ;
Bearson, B ;
Foster, JW .
FEMS MICROBIOLOGY LETTERS, 1997, 147 (02) :173-180
[4]   ACID TOLERANCE OF ENTEROHEMORRHAGIC ESCHERICHIA-COLI [J].
BENJAMIN, MM ;
DATTA, AR .
APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 1995, 61 (04) :1669-1672
[5]   Deletion of the heptosyltransferase genes rfaC and rfaF in Escherichia coli K-12 results in an Re-type lipopolysaccharide with a high degree of 2-aminoethanol phosphate substitution [J].
Brabetz, W ;
MullerLoennies, S ;
Holst, O ;
Brade, H .
EUROPEAN JOURNAL OF BIOCHEMISTRY, 1997, 247 (02) :716-724
[6]   Acid habituation of Escherichia coli and the potential role of cyclopropane fatty acids in low pH tolerance [J].
Brown, JL ;
Ross, T ;
McMeekin, TA ;
Nichols, PD .
INTERNATIONAL JOURNAL OF FOOD MICROBIOLOGY, 1997, 37 (2-3) :163-173
[7]  
Buchanan RL, 1997, FOOD TECHNOL-CHICAGO, V51, P69
[8]   rpoS regulation of acid, heat, and salt tolerance in Escherichia coli O157:H7 [J].
Cheville, AM ;
Arnold, KW ;
Buchrieser, C ;
Cheng, CM ;
Kaspar, CW .
APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 1996, 62 (05) :1822-1824
[9]  
DE MAN J. C., 1960, JOUR APPL BACT, V23, P130, DOI 10.1111/j.1365-2672.1960.tb00188.x
[10]  
De Vuyst L., 1994, BACTERIOCINS LACTIC