Predicting the clinical behavior of ovarian cancer from gene expression profiles

被引:19
作者
De Smet, F
Pochet, NLMM
Engelen, K
Van Gorp, T
Van Hummelen, P
Marchal, K
Amant, F
Timmerman, D
De Moor, BLR
Vergote, IB
机构
[1] Katholieke Univ Leuven, Univ Hosp, Dept Obstet & Gynecol, Div Gynecol Oncol, B-3000 Louvain, Belgium
[2] Katholieke Univ Leuven, Dept Elect Engn, ESAT SCD, Louvain, Belgium
[3] Flanders Interuniv Inst Biotechnol VIB, MicroArray Facil, Louvain, Belgium
关键词
clinical; FIGO stage; microarrays; ovarian cancer; platin resistance;
D O I
10.1111/j.1525-1438.2006.00321.x
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
We investigated whether prognostic information is reflected in the expression patterns of ovarian carcinoma samples. RNA obtained from seven FIGO stage I without recurrence, seven platin-sensitive advanced-stage (III or IV), and six platin-resistant advanced-stage ovarian tumors was hybridized on a complementary DNA microarray with 21,372 spotted clones. The results revealed that a considerable number of genes exhibit nonaccidental differential expression between the different tumor classes. Principal component analysis reflected the differences between the three tumor classes and their order of transition. Using a leave-one-out approach together with least squares support vector machines, we obtained an estimated classification test accuracy of 100% for the distinction between stage I and advanced-stage disease and 76.92% for the distinction between platin-resistant versus platin-sensitive disease in FIGO stage III/IV. These results indicate that gene expression patterns could be useful in clinical management of ovarian cancer.
引用
收藏
页码:147 / 151
页数:5
相关论文
共 19 条
[1]  
[Anonymous], 2002, Least Squares Support Vector Machines
[2]   Prediction of optimal versus suboptimal cytoreduction of advanced-stage serous ovarian cancer with the use of microarrays [J].
Berchuck, A ;
Iversen, ES ;
Lancaster, JM ;
Dressman, HK ;
West, M ;
Nevins, JR ;
Marks, JR .
AMERICAN JOURNAL OF OBSTETRICS AND GYNECOLOGY, 2004, 190 (04) :910-922
[3]   Minimum information about a microarray experiment (MIAME) - toward standards for microarray data [J].
Brazma, A ;
Hingamp, P ;
Quackenbush, J ;
Sherlock, G ;
Spellman, P ;
Stoeckert, C ;
Aach, J ;
Ansorge, W ;
Ball, CA ;
Causton, HC ;
Gaasterland, T ;
Glenisson, P ;
Holstege, FCP ;
Kim, IF ;
Markowitz, V ;
Matese, JC ;
Parkinson, H ;
Robinson, A ;
Sarkans, U ;
Schulze-Kremer, S ;
Stewart, J ;
Taylor, R ;
Vilo, J ;
Vingron, M .
NATURE GENETICS, 2001, 29 (04) :365-371
[4]  
Dawson-Saunders B., 1994, Basic and clinical biostatistics, V2
[5]   Balancing false positives and false negatives for the detection of differential expression in malignancies [J].
De Smet, F ;
Moreau, Y ;
Engelen, K ;
Timmerman, D ;
Vergote, I ;
De Moor, B .
BRITISH JOURNAL OF CANCER, 2004, 91 (06) :1160-1165
[6]   Gene expression profiles, of BRCA1-linked, BRCA2-linked, and sporadic ovarian cancers [J].
Jazaeri, AA ;
Yee, CJ ;
Sotiriou, C ;
Brantley, KR ;
Boyd, J ;
Liu, ET .
JNCI-JOURNAL OF THE NATIONAL CANCER INSTITUTE, 2002, 94 (13) :990-1000
[7]   Gene expression patterns that characterize advanced stage serous ovarian cancers [J].
Lancaster, JM ;
Dressman, HK ;
Whitaker, RS ;
Havrilesky, L ;
Gray, J ;
Marks, JR ;
Nevins, JR ;
Berchuck, A .
JOURNAL OF THE SOCIETY FOR GYNECOLOGIC INVESTIGATION, 2004, 11 (01) :51-59
[8]   Selection of potential markers for epithelial ovarian cancer with gene expression arrays and recursive descent partition analysis [J].
Lu, KH ;
Patterson, AP ;
Wang, L ;
Marquez, RT ;
Atkinson, EN ;
Baggerly, KA ;
Ramoth, LR ;
Rosen, DG ;
Liu, JS ;
Hellstrom, I ;
Smith, D ;
Hartmann, L ;
Fishman, D ;
Berchuck, A ;
Schmandt, R ;
Whitaker, R ;
Gershenson, DM ;
Mills, GB ;
Bast, RC .
CLINICAL CANCER RESEARCH, 2004, 10 (10) :3291-3300
[9]   2ND-LINE PLATINUM THERAPY IN PATIENTS WITH OVARIAN-CANCER PREVIOUSLY TREATED WITH CISPLATIN [J].
MARKMAN, M ;
ROTHMAN, R ;
HAKES, T ;
REICHMAN, B ;
HOSKINS, W ;
RUBIN, S ;
JONES, W ;
ALMADRONES, L ;
LEWIS, JL .
JOURNAL OF CLINICAL ONCOLOGY, 1991, 9 (03) :389-393
[10]   Systematic benchmarking of microarray data classification: assessing the role of non-linearity and dimensionality reduction [J].
Pochet, N ;
De Smet, F ;
Suykens, JAK ;
De Moor, BLR .
BIOINFORMATICS, 2004, 20 (17) :3185-3195