Cholate-induced dimerization of detergent- or phospholipid-solubilized bovine cytochrome c oxidase

被引:53
作者
Musatov, A [1 ]
Robinson, NC [1 ]
机构
[1] Univ Texas, Hlth Sci Ctr, Dept Biochem, San Antonio, TX 78229 USA
关键词
D O I
10.1021/bi016080g
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Bovine heart cytochrome c oxidase (CcO), solubilized by either nonionic detergents or phospholipids, completely dimerizes upon the addition of bile salts, e.g., sodium cholate, sodium deoxycholate, or CHAPS. Bile salt induced dimerization occurs whether dodecyl maltoside, decyl maltoside, or Triton X-100 is the primary solubilizing detergent or the enzyme is dispersed in phosphatidyleholine, phosphatidylethanolamine, or mixtures thereof. In each case, complete CcO dimerization can be verified by sedimentation velocity and sedimentation equilibrium after correction for bound detergent and/or phospholipid. The relative concentration of the bile salt is critical for production of homogeneous, dimeric CcO. For example, enzyme solubilized by 2 mM detergent requires an equal molar concentration of sodium cholate. Similarly, enzyme dispersed in 20 mM phospholipid requires 50 mM sodium cholate, concentrations that are commonly used to reconstitute CcO into small unilamellar vesicles. Bile salts do more than just stabilize dimeric CcO and prevent detergent-induced dissociation into monomers. They are able to completely reverse detergent-induced monomerization and cause completely monomeric CcO to reassociate. Dimeric CcO so generated is no more stable than the original complex and easily dissociates into monomers if the bile salt is removed. The dimerization process is dependent upon a full complement of subunits; e.g., if subunits VIa and VIb are removed, the resulting monomeric CcO will not reassociate upon the addition of sodium cholate. These results support four important consequences: (1) dissociation of dimeric CcO into monomers is reversible; (2) stable dimers can be produced under solution conditions; (3) dimers can be stabilized even at relatively high pH and low enzyme concentration; and (4) subunits VIa and VIb are required for dimerization.
引用
收藏
页码:4371 / 4376
页数:6
相关论文
共 25 条
[1]   DETECTION OF BOVINE HEART MITOCHONDRIAL CYTOCHROME-C-OXIDASE DIMERS IN TRITON X-100 AND PHOSPHOLIPID-VESICLES BY CHEMICAL CROSS-LINKING [J].
ESTEY, LA ;
PROCHASKA, LJ .
BIOCHEMISTRY, 1993, 32 (48) :13270-13276
[2]   STUDIES ON THE ROLE OF THE OLIGOMERIC STATE AND SUBUNIT-III OF CYTOCHROME-OXIDASE IN PROTON TRANSLOCATION [J].
FINEL, M ;
WIKSTROM, M .
BIOCHIMICA ET BIOPHYSICA ACTA, 1986, 851 (01) :99-108
[3]   STRUCTURE OF CYTOCHROME-C OXIDASE IN DEOXYCHOLATE-DERIVED 2-DIMENSIONAL CRYSTALS [J].
FULLER, SD ;
CAPALDI, RA ;
HENDERSON, R .
JOURNAL OF MOLECULAR BIOLOGY, 1979, 134 (02) :305-327
[4]   ELECTRON-TRANSFER IN MONOMERIC FORMS OF BEEF AND SHARK HEART CYTOCHROME-C OXIDASE [J].
GEORGEVICH, G ;
DARLEYUSMAR, VM ;
MALATESTA, F ;
CAPALDI, RA .
BIOCHEMISTRY, 1983, 22 (06) :1317-1323
[5]   ARRANGEMENT OF CYTOCHROME-OXIDASE MOLECULES IN 2-DIMENSIONAL VESICLE CRYSTALS [J].
HENDERSON, R ;
CAPALDI, RA ;
LEIGH, JS .
JOURNAL OF MOLECULAR BIOLOGY, 1977, 112 (04) :631-648
[6]   SEPARATION OF MAMMALIAN CYTOCHROME-C-OXIDASE INTO 13 POLYPEPTIDES BY A SODIUM DODECYL-SULFATE GEL-ELECTROPHORETIC PROCEDURE [J].
KADENBACH, B ;
JARAUSCH, J ;
HARTMANN, R ;
MERLE, P .
ANALYTICAL BIOCHEMISTRY, 1983, 129 (02) :517-521
[7]   MEMBRANE-PROTEIN OLIGOMERIC STRUCTURE AND TRANSPORT FUNCTION [J].
KLINGENBERG, M .
NATURE, 1981, 290 (5806) :449-454
[8]   Phosphatidylglycerol is involved in the dimerization of photosystem II [J].
Kruse, O ;
Hankamer, B ;
Konczak, C ;
Gerle, C ;
Morris, E ;
Radunz, A ;
Schmid, GH ;
Barber, J .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2000, 275 (09) :6509-6514
[9]  
KUBOYAMA M, 1972, J BIOL CHEM, V247, P6375
[10]   Intermonomer interactions in dimer of bovine heart cytochrome c oxidase [J].
Lee, SJ ;
Yamashita, E ;
Abe, T ;
Fukumoto, Y ;
Tsukihara, T ;
Shinzawa-Itoh, K ;
Ueda, H ;
Yoshikawa, S .
ACTA CRYSTALLOGRAPHICA SECTION D-STRUCTURAL BIOLOGY, 2001, 57 :941-947