The anodic oxidation of p-benzoquinone and maleic acid

被引:58
作者
Bock, C [1 ]
MacDougall, B [1 ]
机构
[1] Natl Res Council Canada, Ottawa, ON K1A 0R6, Canada
关键词
D O I
10.1149/1.1392030
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
The oxidation of organics, in particular of p-benzoquinone and maleic acid, at high anodic potentials has been studied using a range of anode materials such as noble-metal-based oxides and antimony-doped tin oxides. The influence of the current density was also investigated showing that the oxidation rate of p-benzoquinone increased only slightly with increasing current density. The efficiency of the p-benzoquinone oxidation was found to depend on several properties of the anode material, not just its chemical nature. Furthermore, efficiencies for the partial oxidation of p-benzoquinone using specially prepared noble-metal-oxide-based anodes were found to be only somewhat smaller or even as high as those observed for PbO2 or antimony-doped tin oxide anodes, respectively. The anodic electrolysis of maleic acid solutions was found to decrease the activity of IrO2 for the oxidation of organic compounds. This was not observed when PbO2 was employed for the oxidation of maleic acid. (C) 1999 The Electrochemical Society. S0013-4651(98)12-099-2. All rights reserved.
引用
收藏
页码:2925 / 2932
页数:8
相关论文
共 21 条
[1]   OXIDATION OF ORGANIC-COMPOUNDS BY FENTON REAGENT - POSSIBILITIES AND LIMITS [J].
ALHAYEK, N ;
DORE, M .
ENVIRONMENTAL TECHNOLOGY LETTERS, 1985, 6 (01) :37-50
[2]   KINETICS AND MECHANISM OF OXYGEN EVOLUTION ON IRO2-BASED ELECTRODES CONTAINING TI AND CE ACIDIC SOLUTIONS [J].
ALVES, VA ;
DASILVA, LA ;
BOODTS, JFC ;
TRASATTI, S .
ELECTROCHIMICA ACTA, 1994, 39 (11-12) :1585-1589
[3]   Degradation of 4-chlorophenol by anodic oxidation, electro-Fenton, photoelectro-Fenton, and peroxi-coagulation processes [J].
Brillas, E ;
Sauleda, R ;
Casado, J .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1998, 145 (03) :759-765
[4]   ANODIC-OXIDATION OF PHENOL FOR WASTE-WATER TREATMENT [J].
COMNINELLIS, C ;
PULGARIN, C .
JOURNAL OF APPLIED ELECTROCHEMISTRY, 1991, 21 (08) :703-708
[5]   Electrocatalysis in anodic oxidation of organics with simultaneous oxygen evolution [J].
Comninellis, C ;
DeBattisti, A .
JOURNAL DE CHIMIE PHYSIQUE ET DE PHYSICO-CHIMIE BIOLOGIQUE, 1996, 93 (04) :673-679
[6]   ELECTROCATALYSIS IN THE ELECTROCHEMICAL CONVERSION/COMBUSTION OF ORGANIC POLLUTANTS FOR WASTE-WATER TREATMENT [J].
COMNINELLIS, C .
ELECTROCHIMICA ACTA, 1994, 39 (11-12) :1857-1862
[7]   INTERFACIAL PROPERTIES OF OXIDES USED AS ANODES IN THE ELECTROCHEMICAL TECHNOLOGY [J].
DAGHETTI, A ;
LODI, G ;
TRASATTI, S .
MATERIALS CHEMISTRY AND PHYSICS, 1983, 8 (01) :1-90
[8]   ELECTRODE KINETICS OF OXYGEN EVOLUTION AND DISSOLUTION ON RH IR AND PT-RH ALLOY ELECTRODES [J].
DAMJANOVIC, A ;
DEY, A ;
BOCKRIS, JOM .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1966, 113 (07) :739-+
[9]   ELECTROCATALYSIS OF ANODIC OXYGEN-TRANSFER REACTIONS - TITANIUM SUBSTRATES FOR PURE AND DOPED LEAD DIOXIDE FILMS [J].
FENG, JR ;
JOHNSON, DC .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1991, 138 (11) :3328-3337
[10]   ELECTROCATALYSIS OF ANODIC OXYGEN-TRANSFER REACTIONS - THE ELECTROCHEMICAL INCINERATION OF BENZOQUINONE [J].
FENG, JR ;
HOUK, LL ;
JOHNSON, DC ;
LOWERY, SN ;
CAREY, JJ .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1995, 142 (11) :3626-3632