Graphene-carbon nanotube composite as an effective conducting scaffold to enhance the photoelectrochemical water oxidation activity of a hematite film

被引:88
作者
Kim, Jae Young [1 ]
Jang, Ji-Wook [1 ]
Youn, Duck Hyun [1 ]
Kim, Jae Yul [1 ]
Kim, Eun Sun [1 ]
Lee, Jae Sung [1 ]
机构
[1] Pohang Univ Sci & Technol POSTECH, Dept Chem Engn, Div Adv Nucl Engn, Pohang 790784, South Korea
关键词
CHARGE-TRANSFER; OXIDE;
D O I
10.1039/c2ra21169f
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The iron oxide photoanode was modified with a graphene-carbon nanotube (CNT) composite conducting scaffold for efficient charge transfer from Fe2O3 particles to transparent conducting oxide substrate in photoelectrochemical water splitting cells. The Fe2O3-composite photoanode showed a photocurrent increase of 530% compared with to the bare Fe2O3 photoanode at 1.23 V vs. RHE, while the increase was only 200 and 240% for Fe2O3-CNT and Fe2O3-graphene photoanodes, respectively. This remarkable performance enhancement by the composite scaffold was attributed to synergistic effects induced by the formation of a 3D-like architecture from 1D CNT and 2D graphene. They become a spacer for each other forming a more open and highly exposed structure, in which both 2D graphene and 1D CNT can exist in the forms with much less self-agglomeration, thus not only enlarging the contact area between the conducting scaffold and Fe2O3 particles but also recovering in part the intrinsic conducting ability of graphene and CNT.
引用
收藏
页码:9415 / 9422
页数:8
相关论文
共 28 条
[1]   Phase and photoelectrochemical behavior of solution-processed Fe2O3 nanocrystals for oxidation of water under solar light [J].
Borse, Pramod H. ;
Jun, Hwichan ;
Choi, Sun Hee ;
Hong, Suk Joon ;
Lee, Jae Sung .
APPLIED PHYSICS LETTERS, 2008, 93 (17)
[2]   Highly conductive carbon-nanotube/graphite-oxide hybrid films [J].
Cai, Dongyu ;
Song, Mo ;
Xu, Chenxi .
ADVANCED MATERIALS, 2008, 20 (09) :1706-+
[3]   Translucent thin film Fe2O3 photoanodes for efficient water splitting by sunlight:: Nanostructure-directing effect of Si-doping [J].
Cesar, I ;
Kay, A ;
Martinez, JAG ;
Grätzel, M .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2006, 128 (14) :4582-4583
[4]   A flexible carbon counter electrode for dye-sensitized solar cells [J].
Chen, Jikun ;
Li, Kexin ;
Luo, Yanhong ;
Guo, Xiaozhi ;
Li, Dongmei ;
Deng, Minghui ;
Huang, Shuqing ;
Meng, Qingbo .
CARBON, 2009, 47 (11) :2704-2708
[5]  
Chen ZP, 2011, NAT MATER, V10, P424, DOI [10.1038/NMAT3001, 10.1038/nmat3001]
[6]   Photoelectrochemical cells [J].
Grätzel, M .
NATURE, 2001, 414 (6861) :338-344
[7]   Improvement of efficiency of dye-sensitized solar cells by reduction of internal resistance [J].
Han, LY ;
Koide, N ;
Chiba, Y ;
Islam, A ;
Komiya, R ;
Fuke, N ;
Fukui, A ;
Yamanaka, R .
APPLIED PHYSICS LETTERS, 2005, 86 (21) :1-3
[8]   Photoelectrochemistry of stacked-cup carbon nanotube films. Tube-length dependence and charge transfer with excited porphyrin [J].
Hasobe, Taku ;
Murata, Hideyuki ;
Kamat, Prashant V. .
JOURNAL OF PHYSICAL CHEMISTRY C, 2007, 111 (44) :16626-16634
[9]   Pt-doped α-Fe2O3 thin films active for photoelectrochemical water splitting [J].
Hu, Yong-Sheng ;
Kleiman-Shwarsctein, Alan ;
Forman, Arnold J. ;
Hazen, Daniel ;
Park, Jung-Nam ;
McFarland, Eric W. .
CHEMISTRY OF MATERIALS, 2008, 20 (12) :3803-3805
[10]   PREPARATION OF GRAPHITIC OXIDE [J].
HUMMERS, WS ;
OFFEMAN, RE .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1958, 80 (06) :1339-1339