Structure of the soluble methane monooxygenase regulatory protein B

被引:97
作者
Walters, KJ
Gassner, GT
Lippard, SJ [1 ]
Wagner, G
机构
[1] MIT, Dept Chem, Cambridge, MA 02139 USA
[2] Harvard Univ, Comm Higher Degrees Biophys, Cambridge, MA 02138 USA
[3] Harvard Univ, Sch Med, Dept Biol Chem & Mol Pharmacol, Boston, MA 02115 USA
关键词
D O I
10.1073/pnas.96.14.7877
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The soluble methane monooxygenase (sMMO; EC 1.14.13.25) from the pseudothermophile Methylococcus capsulatus (Bath) is a three-component enzyme system that catalyzes the selective oxidation of methane to methanol. We have used NMR spectroscopy to produce a highly refined structure of MMOB, the 16-kDa regulatory protein of this system. This structure has a unique and intricate fold containing seven beta-strands forming two beta-sheets oriented perpendicular to each other and bridged by three alpha-helices. The rate and efficiency of the methane hydroxylation by sMMO depend on dynamic binding interactions of the hydroxylase with the reductase and regulatory protein components during catalysis. We have monitored by NMR the binding of MMOB to the hydroxylase in the presence and absence of the reductase. The results of these studies provide structural insight into how the regulatory protein interacts with the hydroxylase.
引用
收藏
页码:7877 / 7882
页数:6
相关论文
共 30 条
[1]  
Abragam A., 2002, PRINCIPLES NUCL MAGN
[2]   AN ALTERNATIVE 3D-NMR TECHNIQUE FOR CORRELATING BACKBONE N-15 WITH SIDE-CHAIN H-BETA-RESONANCES IN LARGER PROTEINS [J].
ARCHER, SJ ;
IKURA, M ;
TORCHIA, DA ;
BAX, A .
JOURNAL OF MAGNETIC RESONANCE, 1991, 95 (03) :636-641
[3]   THE PROGRAM XEASY FOR COMPUTER-SUPPORTED NMR SPECTRAL-ANALYSIS OF BIOLOGICAL MACROMOLECULES [J].
BARTELS, C ;
XIA, TH ;
BILLETER, M ;
GUNTERT, P ;
WUTHRICH, K .
JOURNAL OF BIOMOLECULAR NMR, 1995, 6 (01) :1-10
[4]   Mutational and structural analyses of the regulatory protein B of soluble methane monooxygenase from Methylococcus capsulatus (Bath) [J].
Brandstetter, H ;
Whittington, DA ;
Lippard, SJ ;
Frederick, CA .
CHEMISTRY & BIOLOGY, 1999, 6 (07) :441-449
[5]  
BRUNGER AT, 1993, XPLOR VERSION 3 1 SY
[6]   Solution structure of component B from methane monooxygenase derived through heteronuclear NMR and molecular modeling [J].
Chang, SL ;
Wallar, BJ ;
Lipscomb, JD ;
Mayo, KH .
BIOCHEMISTRY, 1999, 38 (18) :5799-5812
[7]   Protein backbone angle restraints from searching a database for chemical shift and sequence homology [J].
Cornilescu, G ;
Delaglio, F ;
Bax, A .
JOURNAL OF BIOMOLECULAR NMR, 1999, 13 (03) :289-302
[8]   An EPR study of the dinuclear iron site in the soluble methane monooxygenase from Methylococcus capsulatus (Bath) reduced by one electron at 77 K:: The effects of component interactions and the binding of small molecules to the diiron(III) center [J].
Davydov, R ;
Valentine, AM ;
Komar-Panicucci, S ;
Hoffman, BM ;
Lippard, SJ .
BIOCHEMISTRY, 1999, 38 (13) :4188-4197
[9]   X-RAY-ABSORPTION SPECTROSCOPIC STUDIES OF THE DIIRON CENTER IN METHANE MONOOXYGENASE IN THE PRESENCE OF SUBSTRATE AND THE COUPLING PROTEIN OF THE ENZYME-SYSTEM [J].
DEWITT, JG ;
ROSENZWEIG, AC ;
SALIFOGLOU, A ;
HEDMAN, B ;
LIPPARD, SJ ;
HODGSON, KO .
INORGANIC CHEMISTRY, 1995, 34 (10) :2505-2515
[10]  
FOX BG, 1991, J BIOL CHEM, V266, P540