Size and Shape Control of Metal Nanoparticles for Reaction Selectivity in Catalysis

被引:515
作者
An, Kwangjin [1 ,2 ,3 ]
Somorjai, Gabor A. [1 ,2 ,3 ]
机构
[1] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA
[2] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Chem Sci, Berkeley, CA 94720 USA
[3] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA
关键词
catalyst; colloid; in situ characterization; nanoparticles; selectivity; GENERATION VIBRATIONAL SPECTROSCOPY; COLLOIDAL PLATINUM NANOPARTICLES; BLODGETT MONOLAYER FORMATION; MESOPOROUS SBA-15 SILICA; SINGLE-CRYSTAL SURFACES; POLYOL SYNTHESIS; PALLADIUM NANOPARTICLES; PYRROLE HYDROGENATION; CHEMICAL-SYNTHESIS; CO OXIDATION;
D O I
10.1002/cctc.201200229
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
A nanoparticle with well-defined surfaces, prepared through colloidal chemistry, enables it to be studied as a model heterogeneous catalyst. The colloidal synthetic approach provides versatile tools to control the size and shape of nanoparticles. Traditional nucleation and growth mechanisms have been utilized to understand how nanoparticles can be uniformly synthesized and unprecedented shapes can be controlled. Now, the size of metal particles can be controlled to cluster regimes by using dendrimers. By using seeds and foreign atoms, specific synthetic environments such as seeded growth and crystal overgrowth can be induced to generate various shaped mono- or bi-metallic, core/shell, or branched nanostructures. For green chemistry, catalysis in 21st century is aiming for 100?% selectivity to produce only one desired product at high turnover rates. Recent studies on nanoparticle catalysts clearly demonstrate size and shape dependent selectivity in many catalytic reactions. By combining in situ surface characterization techniques, real-time monitoring of nanoparticles can be performed under reaction environments, thus identifying several molecular factors affecting catalytic activity and selectivity.
引用
收藏
页码:1512 / 1524
页数:13
相关论文
共 118 条
  • [1] Microwave Synthesis of Bimetallic Nanoalloys and CO Oxidation on Ceria-Supported Nanoalloys
    Abdelsayed, Victor
    Aljarash, Ahlam
    El-Shall, M. Samy
    Al Othman, Zeid A.
    Alghamdi, Ahmed H.
    [J]. CHEMISTRY OF MATERIALS, 2009, 21 (13) : 2825 - 2834
  • [2] Shape-controlled synthesis of colloidal platinum nanoparticles
    Ahmadi, TS
    Wang, ZL
    Green, TC
    Henglein, A
    ElSayed, MA
    [J]. SCIENCE, 1996, 272 (5270) : 1924 - 1926
  • [3] Size and Shape Dependence on Pt Nanoparticles for the Methylcyclopentane/Hydrogen Ring Opening/Ring Enlargement Reaction
    Alayoglu, S.
    Aliaga, C.
    Sprung, C.
    Somorjai, G. A.
    [J]. CATALYSIS LETTERS, 2011, 141 (07) : 914 - 924
  • [4] CO2 Hydrogenation Studies on Co and CoPt Bimetallic Nanoparticles Under Reaction Conditions Using TEM, XPS and NEXAFS
    Alayoglu, Selim
    Beaumont, Simon K.
    Zheng, Fan
    Pushkarev, Vladimir V.
    Zheng, Haimei
    Iablokov, Viacheslav
    Liu, Zhi
    Guo, Jinghua
    Kruse, Norbert
    Somorjai, Gabor A.
    [J]. TOPICS IN CATALYSIS, 2011, 54 (13-15) : 778 - 785
  • [5] Colloid chemistry of nanocatalysts: A molecular view
    An, Kwangjin
    Alayoglu, Selim
    Ewers, Trevor
    Somorjai, Gabor A.
    [J]. JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2012, 373 : 1 - 13
  • [6] [Anonymous], 2007, ANGEW CHEMIE, DOI [10.1002/ange.200603148, DOI 10.1002/ANGE.200603148]
  • [7] [Anonymous], 2006, ANGEW CHEM, DOI DOI 10.1002/ANGE.200603068
  • [8] [Anonymous], ANGEW CHEM
  • [9] Monodisperse Platinum Nanospheres with Adjustable Diameters from 10 to 100 nm: Synthesis and Distinct Optical Properties
    Bigall, Nadja C.
    Haertling, Thomas
    Klose, Markus
    Simon, Paul
    Eng, Lukas M.
    Eychmueller, Alexander
    [J]. NANO LETTERS, 2008, 8 (12) : 4588 - 4592
  • [10] From Single Pt Atoms to Pt Nanocrystals: Photoreduction of Pt2+ Inside of a PAMAM Dendrimer
    Borodko, Yuri
    Ercius, Peter
    Pushkarev, Vladimir
    Thompson, Chris
    Somorjai, Gabor
    [J]. JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2012, 3 (02): : 236 - 241