Metal movement within the plant: contribution of nicotianamine and yellow stripe 1-like transporters

被引:582
作者
Curie, Catherine [1 ]
Cassin, Gaelle [1 ]
Couch, Daniel [1 ]
Divol, Fanchon [1 ]
Higuchi, Kyoko [2 ]
Le Jean, Marie [1 ]
Misson, Julie [1 ]
Schikora, Adam [1 ]
Czernic, Pierre [1 ]
Mari, Stephane [1 ]
机构
[1] Univ Montpellier 2, CNRS, SupAgro INRA, Lab Biochim & Physiol Mol Plantes,UMR5004, F-34060 Montpellier 1, France
[2] Tokyo Univ Agr, Dept Appl Biol & Chem, Lab Plant Prod Chem, Setagaya Ku, Tokyo 1568502, Japan
关键词
TOMATO MUTANT CHLORONERVA; NORMALIZING FACTOR; DEPENDENT CHANGES; DEFICIENT RICE; HEAVY-METALS; IRON UPTAKE; MAIZE; SPECIATION; EXPRESSION; CLONING;
D O I
10.1093/aob/mcn207
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Since the identification of the genes controlling the root acquisition of iron (Fe), the control of inter- and intracellular distribution has become an important challenge in understanding metal homeostasis. The identification of the yellow stripe-like (YSL) transporter family has paved the way to decipher the mechanisms of long-distance transport of Fe. Once in the plant, Fe will systematically react with organic ligands whose identity is poorly known so far. Among potential ligands, nicotianamine has been identified as an important molecule for the circulation and delivery of metals since it participates in the loading of copper (Cu) and nickel in xylem and prevents Fe precipitation in leaves. Nicotianamine is a precursor of phytosiderophores, which are high-affinity Fe ligands exclusively synthesized by Poaceae species and excreted by roots for the chelation and acquisition of Fe. Maize YS1 is the founding member of a family of membrane transporters called YS1-like (YSL), which functions in root Fe-phytosiderophore uptake from the soil. Next to this well-known Fe acquisition role, most of the other YSL family members are likely to function in plant-wide distribution of metals since (a) they are produced in vascular tissues throughout the plant and (b) they are found in non-Poaceae species that do not synthesize phytosiderophores. The hypothesized activity as Fe-nicotianamine transporters of several YSL members has been demonstrated experimentally by heterologous expression in yeast or by electrophysiology in Xenopus oocytes but, despite numerous attempts, proof of the arabidopsis YSL substrate specificity is still lacking. Reverse genetics, however, has revealed a role for AtYSL members in the remobilization of Cu and zinc from senescing leaves, in the formation of pollen and in the Fe, zinc and Cu loading of seeds. Preliminary data on the YSL family of transporters clearly argues in favour of its role in the long-distance transport of metals through and between vascular tissues to eventually support gametogenesis and embryo development.
引用
收藏
页码:1 / 11
页数:11
相关论文
共 54 条
[1]   THE NORMALIZING FACTOR FOR THE TOMATO MUTANT CHLORONERVA .29. CORRELATION BETWEEN METAL-COMPLEX FORMATION AND BIOLOGICAL-ACTIVITY OF NICOTIANAMINE ANALOGS [J].
ANDEREGG, G ;
RIPPERGER, H .
JOURNAL OF THE CHEMICAL SOCIETY-CHEMICAL COMMUNICATIONS, 1989, (10) :647-650
[2]   Cloning and characterization of deoxymugineic acid synthase genes from graminaceous plants [J].
Bashir, Khurram ;
Inoue, Haruhiko ;
Nagasaka, Seiji ;
Takahashi, Michiko ;
Nakanishi, Hiromi ;
Mori, Satoshi ;
Nishizawa, Naoko K. .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2006, 281 (43) :32395-32402
[3]   SUBCELLULAR-LOCALIZATION AND CHARACTERIZATION OF EXCESSIVE IRON IN THE NICOTIANAMINE-LESS TOMATO MUTANT CHLORONERVA [J].
BECKER, R ;
FRITZ, E ;
MANTEUFFEL, R .
PLANT PHYSIOLOGY, 1995, 108 (01) :269-275
[4]   ON THE NORMALIZING FACTOR FOR THE TOMATO MUTANT CHLORONERVA .13. METAL-COMPLEX FORMATION BY NICOTIANAMINE, A POSSIBLE PHYTOSIDEROPHORE [J].
BENES, I ;
SCHREIBER, K ;
RIPPERGER, H ;
KIRCHEISS, A .
EXPERIENTIA, 1983, 39 (03) :261-262
[5]  
BRIAT JF, 2006, IRON NUTR PLANTS RHI
[6]   Maize yellow stripe1 encodes a membrane protein directly involved in Fe(III) uptake [J].
Curie, C ;
Panaviene, Z ;
Loulergue, C ;
Dellaporta, SL ;
Briat, JF ;
Walker, EL .
NATURE, 2001, 409 (6818) :346-349
[7]   Iron transport and signaling in plants [J].
Curie, C ;
Briat, JF .
ANNUAL REVIEW OF PLANT BIOLOGY, 2003, 54 :183-206
[8]   Arabidopsis Yellow Stripe-Like2 (YSL2):: a metal-regulated gene encoding a plasma membrane transporter of nicotianamine-metal complexes [J].
DiDonato, RJ ;
Roberts, LA ;
Sanderson, T ;
Eisley, RB ;
Walker, EL .
PLANT JOURNAL, 2004, 39 (03) :403-414
[9]   A novel iron-regulated metal transporter from plants identified by functional expression in yeast [J].
Eide, D ;
Broderius, M ;
Fett, J ;
Guerinot, ML .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1996, 93 (11) :5624-5628
[10]   TcYSL3, a member of the YSL gene family from the hyper-accumulator Thlaspi caerulescens, encodes a nicotianamine-Ni/Fe transporter [J].
Gendre, Delphine ;
Czernic, Pierre ;
Conejero, Genevieve ;
Pianelli, Katia ;
Briat, Jean-Francois ;
Lebrun, Michel ;
Mari, Stephane .
PLANT JOURNAL, 2007, 49 (01) :1-15