Genome-wide identification of NBS genes in japonica rice reveals significant expansion of divergent non-TIR NBS-LRR genes

被引:410
作者
Zhou, T
Wang, Y
Chen, JQ
Araki, H
Jing, Z
Jiang, K
Shen, J
Tian, D [1 ]
机构
[1] Nanjing Univ, Dept Biol, State Key Lab Pharmaceut Biotechnol, Nanjing 210093, Peoples R China
[2] Univ Chicago, Dept Ecol & Evolut, Chicago, IL 60637 USA
基金
日本学术振兴会;
关键词
rice; NBS-LRR genes; molecular diversity; gene motif analysis disease; resistance genes;
D O I
10.1007/s00438-004-0990-z
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
A complete set of candidate disease resistance ( R) genes encoding nucleotide-binding sites (NBSs) was identified in the genome sequence of japonica rice ( Oryza sativa L. var. Nipponbare). These putative R genes were characterized with respect to structural diversity, phylogenetic relationships and chromosomal distribution, and compared with those in Arabidopsis thaliana. We found 535 NBS-coding sequences, including 480 non-TIR (Toll/IL-1 receptor) NBS-LRR (Leucine Rich Repeat) genes. TIR NBS-LRR genes, which are common in A. thaliana, have not been identified in the rice genome. The number of non-TIR NBS-LRR genes in rice is 8.7 times higher than that in A. thaliana, and they account for about 1% of all of predicted ORFs in the rice genome. Some 76% of the NBS genes were located in 44 gene clusters or in 57 tandem arrays, and 16 apparent gene duplications were detected in these regions. Phylogenetic analyses based both NBS and N-terminal regions classified the genes into about 200 groups, but no deep clades were detected, in contrast to the two distinct clusters found in A. thaliana. The structural and genetic diversity that exists among NBS-LRR proteins in rice is remarkable, and suggests that diversifying selection has played an important role in the evolution of R genes in this agronomically important species. (Supplemental material is available online at http://gattaca.nju.edu.cn.).
引用
收藏
页码:402 / 415
页数:14
相关论文
共 40 条
[1]   Diversity in nucleotide binding site-leucine-rich repeat genes in cereals [J].
Bai, JF ;
Pennill, LA ;
Ning, JC ;
Lee, SW ;
Ramalingam, J ;
Webb, CA ;
Zhao, BY ;
Sun, Q ;
Nelson, JC ;
Leach, JE ;
Hulbert, SH .
GENOME RESEARCH, 2002, 12 (12) :1871-1884
[2]  
Bailey T L, 1995, Proc Int Conf Intell Syst Mol Biol, V3, P21
[3]   Ig-like domains: Evolution from simple interaction molecules to sophisticated antigen recognition [J].
Barclay, AN .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1999, 96 (26) :14672-14674
[4]   Evolutionary dynamics of plant R-genes [J].
Bergelson, J ;
Kreitman, M ;
Stahl, EA ;
Tian, DC .
SCIENCE, 2001, 292 (5525) :2281-2285
[5]   A single amino acid difference distinguishes resistant and susceptible alleles of the rice blast resistance gene Pi-ta [J].
Bryan, GT ;
Wu, KS ;
Farrall, L ;
Jia, YL ;
Hershey, HP ;
McAdams, SA ;
Faulk, KN ;
Donaldson, GK ;
Tarchini, R ;
Valent, B .
PLANT CELL, 2000, 12 (11) :2033-2045
[6]   Plant pathogens and integrated defence responses to infection [J].
Dangl, JL ;
Jones, JDG .
NATURE, 2001, 411 (6839) :826-833
[7]   Six amino acid changes confined to the leucine-rich repeat β-strand/β-turn motif determine the difference between the P and P2 rust resistance specificities in flax [J].
Dodds, PN ;
Lawrence, GJ ;
Ellis, JG .
PLANT CELL, 2001, 13 (01) :163-178
[8]   The generation of plant disease resistance gene specificities [J].
Ellis, J ;
Dodds, P ;
Pryor, T .
TRENDS IN PLANT SCIENCE, 2000, 5 (09) :373-379
[9]   Identification of regions in alleles of the flax rust resistance gene L that determine differences in gene-for-gene specificity [J].
Ellis, JG ;
Lawrence, GJ ;
Luck, JE ;
Dodds, PN .
PLANT CELL, 1999, 11 (03) :495-506
[10]   CURRENT STATUS OF GENE-FOR-GENE CONCEPT [J].
FLOR, HH .
ANNUAL REVIEW OF PHYTOPATHOLOGY, 1971, 9 :275-+