An EM algorithm fitting first-order conditional autoregressive models to longitudinal data

被引:15
作者
Schmid, CH
机构
关键词
fixed-interval smoothing algorithm; Kalman filter; measurement error; pulmonary function; SEM algorithm; state-space model;
D O I
10.2307/2291750
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
An EM algorithm fits a state-space formulation of the longitudinal regression model in which a continuous response depends on the lagged response and both time-dependent and time-independent covariates. The baseline response depends only on covariates. The model handles both missing data and Gaussian measurement error on both response and continuous covariates. The E step uses the Kalman filter and associated filtering algorithms to update the unknown true response and predictor series for the observed data. The M step uses standard closed-form Gaussian results. Standard errors come from the supplemented EM (SEM) algorithm. The model accurately fits 6 years of pulmonary function measurements on 158 children with many missing observations.
引用
收藏
页码:1322 / 1330
页数:9
相关论文
共 32 条
[1]   FORMULATION AND ESTIMATION OF DYNAMIC-MODELS USING PANEL DATA [J].
ANDERSON, TW ;
HSIAO, C .
JOURNAL OF ECONOMETRICS, 1982, 18 (01) :47-82
[2]  
[Anonymous], 1976, TIME SERIES ANAL
[3]  
[Anonymous], 1979, Multivariate analysis
[4]   A GEOMETRICAL DERIVATION OF THE FIXED-INTERVAL SMOOTHING ALGORITHM [J].
ANSLEY, CF ;
KOHN, R .
BIOMETRIKA, 1982, 69 (02) :486-487
[5]  
ANSLEY GF, 1984, TIME SERIES ANAL IRR, P9
[6]  
CROWDER D, 1990, ANAL REPEATED MEASUR
[7]   COVARIANCES FOR SMOOTHED ESTIMATES IN STATE-SPACE MODELS [J].
DEJONG, P ;
MACKINNON, MJ .
BIOMETRIKA, 1988, 75 (03) :601-602
[8]  
DIXON WJ, 1992, ANOVA REGRESSION BMD
[9]   UNBALANCED REPEATED-MEASURES MODELS WITH STRUCTURED COVARIANCE MATRICES [J].
JENNRICH, RI ;
SCHLUCHTER, MD .
BIOMETRICS, 1986, 42 (04) :805-820
[10]  
Jones R. H., 1993, LONGITUDINAL DATA SE